National Repository of Grey Literature 7 records found  Search took 0.01 seconds. 
Changes in oxidative phosphorylation during development of cellular senescence
Zima, Michal ; Hodný, Zdeněk (advisor) ; Kašparová, Dita (referee)
Cellular senescence represents a state of permanent cell cycle arrest. It is considered to be an active response of the cell to various extrinsic and intrinsic types of stress, which are damaged and/or uncapped telomeres, activation of certain oncogenes, DNA damage and effects of several cytokines. This thesis describes current mechanisms which may result in establishment of senescence phenotype, putting those facts in association with changes in oxidative phosphorylation. In thesis are also mentioned features of senescence cells and their impact on the neighborhood. Special attention is focused on the role of reactive oxygen species in promotion of cellular senescence, mechanisms of their elevation, the role of NADPH oxidases and the inhibition of mitochondrial oxidative phosphorylation complexes by activity of cytokine signaling pathways STAT3 and TGFbeta. Key words: cellular senescence, reactive oxygen species, cytokines, mitochondria, oxidative phosphorylation chain, NADPH oxidases, Signal Transducer and Activator of Transcription 3 (STAT3), TGF-β, DNA damage response (DDR)
Role of oxidative stress in cardioprotection induced by exercise.
Kyclerová, Eva ; Nováková, Olga (advisor) ; Kašparová, Dita (referee)
Cardiovascular diseases are the major cause of death in developed countries. It is known that heart muscle can activates endogenous protective pathways in response to stress, thereby increasing resistance against ischemia/reperfusion (I/R) injury. Protective pathways involve many signaling molecules and reactive oxygen species (ROS) play an important role among them. ROS are applied in cardioprotection induced by various stimuli, such as chronic hypoxia, preconditioning and also physical exercise. It has been demonstrated that regular physical exercise naturally leads to the positive adaptation to protect heart against injury. The balance between production of ROS and their removal by antioxidant protection system is important for the right functioning of the heart. The overproduction of ROS occurs in pathological conditions such as an I/R leading to oxidative stress contributing to subsequent damage of heart. ROS may contribute not only to the injury but in the mild concentrations, resulting for example from physical exercise, ROS are important signaling molecules involved in series of events leading to cardioprotection. Slightly increased oxidative stress protects the heart by increasing the capacity of antioxidant system, stimulates angiogenesis, activates mitochondrial biogenesis and physiological...
Determination of spontaneus abortions - the role of Apo E gene polymorphism, importance of selected congenital thrombophilias and thyroid function during the pregnancy
Kašparová, Dita ; Fait, Tomáš (advisor) ; Procházka, Martin (referee) ; Límanová, Zdeňka (referee)
Introduction: Spontaneous abortion (SA) is the most common complication in pregnancy. The aim of the study was to investigate the causality of selected genetic factors - Apolipoprotein E (Apo E) gene polymorphisms, factor V Leiden (FVL), Prothrombin (PT G20210A) and nongenetics factors - Thyroid stimulating hormone (TSH), free thyroxine (fT4), antibodies against thyroid peroxidase (a-TPO) in the role of early SA. Materials and methods: For genotyping of APO E polymorphism was used PCR-RFLP. The detection of mutations in genes FV and FII was performed using by HRM. Laboratory markers of thyroid (TSH, a-TPO and fT4) were determined by an automated analyzer using chemiluminescent immunoassay. Results: APOE genotypes of investigated group of 410 samples abortioned embryonic/ fetal tissues were not significantly different from 2 606 adult controls (P = 0.653). In observed infertile group of 75 women with isolated SA was FVL detected in heterozygous constitution with a prevalence of 12 %. The prevalence of FVL in a group of women with early insulated SA was significantly higher than 76 controls (12 % vs. 2.6 %, P = 0.031). The difference of PTG20210A prevalence between women with isolated SA and controls was not significant (4 % vs. 5.3 %, P = 1). The prevalence of elevated TSH levels (higher than 2.5...
Changes in oxidative phosphorylation during development of cellular senescence
Zima, Michal ; Hodný, Zdeněk (advisor) ; Kašparová, Dita (referee)
Cellular senescence represents a state of permanent cell cycle arrest. It is considered to be an active response of the cell to various extrinsic and intrinsic types of stress, which are damaged and/or uncapped telomeres, activation of certain oncogenes, DNA damage and effects of several cytokines. This thesis describes current mechanisms which may result in establishment of senescence phenotype, putting those facts in association with changes in oxidative phosphorylation. In thesis are also mentioned features of senescence cells and their impact on the neighborhood. Special attention is focused on the role of reactive oxygen species in promotion of cellular senescence, mechanisms of their elevation, the role of NADPH oxidases and the inhibition of mitochondrial oxidative phosphorylation complexes by activity of cytokine signaling pathways STAT3 and TGFbeta. Key words: cellular senescence, reactive oxygen species, cytokines, mitochondria, oxidative phosphorylation chain, NADPH oxidases, Signal Transducer and Activator of Transcription 3 (STAT3), TGF-β, DNA damage response (DDR)
Role of oxidative stress in cardioprotection induced by exercise.
Kyclerová, Eva ; Nováková, Olga (advisor) ; Kašparová, Dita (referee)
Cardiovascular diseases are the major cause of death in developed countries. It is known that heart muscle can activates endogenous protective pathways in response to stress, thereby increasing resistance against ischemia/reperfusion (I/R) injury. Protective pathways involve many signaling molecules and reactive oxygen species (ROS) play an important role among them. ROS are applied in cardioprotection induced by various stimuli, such as chronic hypoxia, preconditioning and also physical exercise. It has been demonstrated that regular physical exercise naturally leads to the positive adaptation to protect heart against injury. The balance between production of ROS and their removal by antioxidant protection system is important for the right functioning of the heart. The overproduction of ROS occurs in pathological conditions such as an I/R leading to oxidative stress contributing to subsequent damage of heart. ROS may contribute not only to the injury but in the mild concentrations, resulting for example from physical exercise, ROS are important signaling molecules involved in series of events leading to cardioprotection. Slightly increased oxidative stress protects the heart by increasing the capacity of antioxidant system, stimulates angiogenesis, activates mitochondrial biogenesis and physiological...
Analysis of selected gene transcripts in the rat myocardium adaptated to chronic hypoxia
Kašparová, Dita ; Žurmanová, Jitka (advisor) ; Nováková, Olga (referee)
Dita Kašparová Chronická hypoxie a exprese genů 4 Abstract Adaptation to chronic hypoxia (CH) is characterized by a variety of functional changes in order to maintain metabolic and energy homeostasis. It has been known for many years that both humans and animals indigenous or adapted to high-altitude hypoxia are more tolerant to an acute ischemic injury of the heart. Cardioprotective mechanisms activated by adaptive responses to chronic hypoxia can be the result of altered transcriptional regulations in left ventricles. Here we report results from the gene expression profiling of adaptive responses in three models of chronically hypoxic heart. Adult male Wistar rats were exposed for 21 days to either continuous normobaric hypoxia (CCH; 10% O2) or CCH interrupted daily by 1-hour reoxygenation (RCH) or CCH interrupted daily by 16-hour (CIH). Cardiprotective effect of CCH adaptation is abolished by brief daily reoxygenation, RCH adaptation. In the present study, we aimed to determine myocardial mRNA expression of 19 candidate genes divided into three important groups: i) Hypoxia inducible factor (HIF1α) and its prolyl and asparaginyl hyroxylases (PHDs and FIH respectively, ii) Creatine kinase (CK) isoenzymes which play important role in energy homeostases of heart and iii) the group of main enzymatic...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.