National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Human 4E protein family in stress granules granules and their further characterization
Hrbková, Pavlína ; Frydrýšková, Klára (advisor) ; Hašek, Jiří (referee)
Eukaryotic initiation factor 4E (eIF4E) is a key part of initiation and regulation of translation in human cells. Three members of human eIF4E proteins have been characterized: eIF4E1, eIF4E2 and eIF4E3. Cellular stress causes translation initiation inhibition followed by disassembly of the polysomes, those processes are accompanied by the assembly of cytoplasmic RNA granules, called stress granules (SG). Stress granules are dynamic structures whose composition may vary depending on the cell type and the stress stimulus. In this study, human cells were subjected to the following stress conditions: high temperature (HS), sodium arsenite (AS) or hypoxia. Using fluorescence microscopy, pairs of human translational initiation factors from the 4E protein family were visualized and their localization to SG was assessed with one GFP- 4E incorporated in the stable cell line and the other one detected endogenously. Here we show eIF4E1 being a part of all the SGs, both in HS and AS conditions. Next, the eIF4E1 and eIF4E3 proteins together form more SGs than proteins eIF4E1, respectively eIF4E3, with eIF4E2. And last, that the presence of the particular 4E protein has no effect on the composition of SGs. Furthermore, selected groups of proteins were assessed for their potential to localize to the SGs under HS...
Human 4E protein family in stress granules granules and their further characterization
Hrbková, Pavlína ; Frydrýšková, Klára (advisor) ; Hašek, Jiří (referee)
Eukaryotic initiation factor 4E (eIF4E) is a key part of initiation and regulation of translation in human cells. Three members of human eIF4E proteins have been characterized: eIF4E1, eIF4E2 and eIF4E3. Cellular stress causes translation initiation inhibition followed by disassembly of the polysomes, those processes are accompanied by the assembly of cytoplasmic RNA granules, called stress granules (SG). Stress granules are dynamic structures whose composition may vary depending on the cell type and the stress stimulus. In this study, human cells were subjected to the following stress conditions: high temperature (HS), sodium arsenite (AS) or hypoxia. Using fluorescence microscopy, pairs of human translational initiation factors from the 4E protein family were visualized and their localization to SG was assessed with one GFP- 4E incorporated in the stable cell line and the other one detected endogenously. Here we show eIF4E1 being a part of all the SGs, both in HS and AS conditions. Next, the eIF4E1 and eIF4E3 proteins together form more SGs than proteins eIF4E1, respectively eIF4E3, with eIF4E2. And last, that the presence of the particular 4E protein has no effect on the composition of SGs. Furthermore, selected groups of proteins were assessed for their potential to localize to the SGs under HS...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.