Národní úložiště šedé literatury Nalezeno 4 záznamů.  Hledání trvalo 0.01 vteřin. 
Development, validation, and application of a solver for non-isothermal non-adiabatic packed bed reactors
Hlavatý, Tomáš ; Isoz, Martin ; Khýr, M.
Packed bed reactors are the most frequently used devices to perform heterogeneously catalyzed reactions on industrial scales. The main contribution of our work is the development of a numerical model applicable to simulations of such reactors. The developed model is based on the finite volume method, couples the momentum, mass and energy balances, and is free of any empirical closures. As such, the solver falls into the domain of the direct numerical simulation. In the talk, we will (i) present the new solver fundamental working principles, (ii) report on the verication of each of the solver components against existing literature data and (iii) demonstrate an application of the solver on an industrially relevant case of ethylene oxichlorination performed in a tubular reactor packed with Raschig rings coated by CuCl2 catalyst.
Simulation of heterogeneously-catalyzed non-isothermal reactive flow in industrial packed beds
Hlavatý, Tomáš ; Isoz, Martin ; Khýr, M.
Packed bed reactors are the most frequently used devices to perform heterogeneously catalyzed reactions on industrial scales. An industrial real-life heterogeneous catalysis is complex process that combines fully three-dimensional mass, momentum and energy transport on several scales. In the present work, we leverage our previously developed CFD solver for non-isothermal heterogeneously catalyzed reactive flow based on the finite volume method and couple it with our\nin-house DEM-based method for preparation of random packed beds. The resulting framework is verified in the simplified cases against available analytical solutions and correlations and is used to study an industrially-relevant case of ethylene oxychlorination performed in a tubular packed bed comprising CuCl2-coated catalyst carrying particles. In particular, we compare properties of three different industrially used catalyst carrying particles: Raschig rings, Reformax, and Wagon wheels
Plný tet: Stáhnout plný textHTM
Developing a coupled CFD solver for mass, momentum and heat transport in catalytic filters
Hlavatý, Tomáš ; Isoz, Martin ; Kočí, P.
Using catalytic filters (CF) in automotive exhaust gas aftertreatment decreases the system heat losses and facilitates the CF regeneration. On the other hand, the CF overall performance is strongly dependent on the catalytic material distribution within it. In the present work, we aim to provide a computational framework to study the dependence of the CF characteristics, i.e. the pressure loss and the conversion of gaseous pollutants, on the catalyst distribution. Previously, we built an isothermal computational fluid dynamics (CFD) model of the flow and conversion of gaseous pollutants inside the CF. However, the reactions occurring inside the CF are exothermic and the assumption of constant temperature proved to be too restricting for real-life applications of the developed isothermal CFD model. Thus, in this work, we extend the framework by the enthalpy balance, which requires combining all the transport equations (mass, momentum and enthalpy) in a single solver. The new and more general solver provides results in good agreement with a well established (1+1)D channel model calibrated on experimental data. Furthermore, it allows studying more complex device-scale geometries of laboratory CF samples.
Geometrically realistic macro-scale model for multi-scalesimulations of catalytic filters for automotive gasaftertreatment
Hlavatý, Tomáš ; Isoz, Martin ; Plachá, M. ; Šourek, M. ; Kočí, P.
This paper is part of a research focused on simulating (i) the catalytic conversion of environment endangering gases, and (ii) trapping of the particulate matter in automotive exhaust gas aftertreatment. Historically, the catalytic conversion and the filtration of soot particles were performed in independent devices. However, recent trend is to combine the catalytic converter and soot filter into a single device, the catalytic filter. Compared to the standard two-device system, the catalytic filter is more compact and has lower heat losses. Nevertheless, it is highly sensitive to the catalyst distribution. This study extends our recently developed methodology for pore-scale simulations of flow, diffusion and reaction in the coated catalytic filters. The extension consists of enabling data transfer from macro- to pore-scale models by preparing geometrically realistic macro-scale CFD simulations. The simulation geometry is based on XRT scans of real-life catalytic filters. The flow data from the newly developed macro-scale model are mapped as boundary conditions into the pore-scale simulations and used to improve the estimates of the catalytic filter filtration efficiency.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.