Národní úložiště šedé literatury Nalezeno 6 záznamů.  Hledání trvalo 0.08 vteřin. 
On Harmonic Content of the Wake Behind a Circular Cylinder
Uruba, Václav ; Procházka, Pavel P.
The wake behind cylinder of circular cross-section is subjected to detailed analysis from the point of view harmonic content. The basic, fundamental frequency could be linked to well-known Bénard-von Kámán vortex street, it is called Strouhal frequency very often. However higher harmonics of 2nd and 3rd order have been detected, as well as important inharmonic partials. The topologies of the velocity flow-field corresponding to the harmonic is to be shown.
Increasing Ejector Efficiency via Diffuser Shape Optimization
Kubíčková, Lucie ; Isoz, Martin ; Haidl, Jan
An ejector is a technologically simple and yet wide-application fluid machine. While it has favorable characteristics for a signifficant number of technological processes, its main downside is probably its high operational energy demands. The present paper is an initial result of an ongoing research aimed at improving energy e ciency of the ejector via optimization of its geometry. In the paper, we focus mostly on presenting a general multi-objective optimization framework usable for an ejector shape optimization. The approach applicability is illustrated on a simpli ed problem comprising only a single phase flow in an ejector mixing tube and diffuser. Nevertheless, the achieved simulation and optimization results are validated against experimental data. The proposed optimization method itself is based on multi-objective evolutionary algorithms (MOEAs) combined with computational fluid dynamics (CFD) for evaluation of the vector-valued objective function.
POD-DEIM-based model order reduction for four-way coupled fluid-solid flows
Isoz, Martin ; Šourek, M.
Proper orthogonal decomposition (POD) and discrete empirical interpolation method (DEIM) have become established tools for model order reduction in simulations of fluid flows. However, including moving solid bodies in the computational domain poses additional issues with respect to the fluid-solid coupling and to the solution of the movement of the solids. Still, it seems that if the hybrid ctitious domain-immersed boundary method is used to include the solids in the flow domain, POD-DEIM based approaches may be extended for four-way coupled particleladen flows. The present work focuses on the construction of POD-DEIM based reduced order models for the aforementioned flows.
Inverse mass matrix for higher-order finite element method in linear free-vibration problems
Kolman, Radek ; González, J.G. ; Cimrman, Robert ; Kopačka, Ján ; Cho, S.S. ; Park, B.G.
In the paper, we present adirect inverse mass matrix in the higher-orderfinite element method forsolid mechanics. The direct inverse mass matrix is sparse, has the same structure as the consistent mass matrixand preserves the total mass. The core of derivation of the semi-discrete mixed form is based on the Hamilton’s principle of leastaction. The cardinal issue is finding the relationship between discretized velocities and discretized linear momentum. Finally, the simple formula for the direct inversemass matrix is presented as well as thechoice of density-weighted dual shape functions for linear momentum with respect to the displacement shape functionwith achoice of the lumping mass method for obtaining the correct and positive definitive velocity-linear momentum operator. The application of Dirichlet boundaryconditions into the direct inversemass matrix forafloating system is achieved usingthe projection operator. The suggested methodology is tested on a free-vibration problem of heterogeneous bar for different ordersof shape functions.
On the 3D Dynamics of the Wake Behind a Circular Cylinder
Uruba, Václav ; Procházka, Pavel P. ; Skála, Vladislav
Flow in the wake of a circular cylinder is studied experimentally using time-resolved stereo PIV method. Special attention is paid to 3D topology of dynamical structures. While the distribution of statistic quantities along the cylinder is uniform, and i.e. 2D, the instantaneous flow structure is fully 3D. Within the velocity fluctuating flow field the structures containing streamwise vorticity and velocity components are dominant. The POD modes connected with von Kármán vortex street are identified.
Classical flutter analysis of low pressure steam turbine blade cascade using 3D boundary element method
Prasad, Chandra Shekhar ; Pešek, Luděk
In this paper study of aeroelastic stability in steam turbine rotor is carried out using boundary element method. A mesh free fluid\nsolver is developed for fast estimation of unsteady aerodynamic loading and to estimate the aerodynamic damping in 3D blade cascade. The aerodynamic damping is estimated in traveling wave mode. The unsteady incompressible flow field is modeled using 3D surface Panel method. The proposed methodology successfully estimates aerodynamic damping with acceptable accuracy the for the aeroelastic (classical \n flutter) analysis of 3D blade cascade. The simulated results are compared with experimental data. The simulated aerodynamic damping shows good agreement with\nexperimental results. The present methodology shows significant reduction in computational time over computational fluid dynamic solvers.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.