Národní úložiště šedé literatury Nalezeno 20 záznamů.  1 - 10další  přejít na záznam: Hledání trvalo 0.01 vteřin. 
Enhanced growth rate of diamond films at low temperature in focused microwave plasma system
Babčenko, Oleg ; Bydžovská, Irena ; Fait, Jan ; Shagieva, Ekaterina ; Ondič, Lukáš ; Kromka, Alexander
The low temperature (< 500 °C) diamond film deposition on fused silica in two different focused microwave plasma systems, i.e. a multimode clamshell cavity (MCC) and a rotational ellipsoid cavity (REC) reactor, was investigated. During the experiments, the methane to hydrogen ratio, in the hydrogen-rich process gas mixture, varied from 1 % to 15 % for MCC and from 1 % to 9 % for REC. The grown films were analyzed by scanning electron microscopy and Raman shift measurements. The outcomes of the study and enhanced diamond growth at low temperatures is advantageous for overcoating of fused silica as well as thermally sensitive substrates, e.g. optical elements, photonic crystals, sensors, etc.
Ab-initio study of surface energies and structural influece of vacancies in titanium nitride nanolayer
Lebeda, M. ; Vlčák, P. ; Veřtát, P. ; Drahokoupil, Jan
The surface energies of 8 crystallographic planes and effects of nitrogen vacancies on the lattice parameter in rock salt-like structure of TiN (σ-TiN) were studied using ab-initio method of density functional theory (DFT) with the generalized gradient approximation functional (GGA) as parametrized by Perdex, Burke and Ernzerhof (PBE). The linear decrease of lattice parameter with the increasing presence of nitrogen vacancies up to ca. 80% was observed.\n
General overview of GaN devices and transport properties of AlGaN/GaN HEMT structures - impact of dislocation density and improved design
Hulicius, Eduard ; Hájek, František ; Hospodková, Alice ; Hubík, Pavel ; Gedeonová, Zuzana ; Hubáček, Tomáš ; Pangrác, Jiří ; Kuldová, Karla
GaN-based nanostructures are used for many present semiconductor devices. The main topics are structures for blue LEDs and LDs, but there are also other interesting and important GaN devices namely for power electronics, scintillators and detectors as well as High Electron Mobility Transistors (HEMT). Reduction of dislocation density considerably increases electron mobility in 2DEG. All presented results support our expectation that a suitably designed AlGaN back barrier can help to prevent this phenomenon.
Polyvinylpyrrolidone coating for nanodiamond stabilization in saline solution and silver nanoparticle decoration
Kolářová, Kateřina ; Miliaieva, Daria ; Stehlík, Štěpán
This work presents use of polyvinylpyrrolidone (PVP) for multipurpose coating of oxidized high-pressure high-temperature and detonation nanodiamonds. This simple way of nanodiamonds surface modification aims to improve their colloidal stability in biological environments and reduce their proneness to agglomeration. PVP immobilized on nanodiamond surface also provides for nanodiamond-supported AgNPs preparation by in situ synthesis using AgNO3 as a metallic nanoparticles precursor. Dynamic light scattering (DLS) and UV-vis spectroscopy were used for evaluation of nanoparticles size distribution and dispersibility in water and after exposition of nanoparticles in saline solution. Images acquired by scanning electron microscopy and transmission electron microscope validate the possibility of binding ~ 10 nm AgNPs to nanodiamonds surface.
TCO work function tuning by nanodiamonds
Čermák, Jan ; Miliaieva, Daria ; Sokeng-Djoumessi, A. ; Hoppe, H. ; Stehlík, Štěpán
Deposition of nanodiamonds is found to be able to adjust the work function of transparent conductive oxides that are commonly used in photovoltaics. It also turned out that the change is dependent on the nanodiamond surface termination and that it is not stable in time.
XXIV Czech-Polish seminar: Structural and ferroelectric phase transitions: Book of abstracts and program
Pokorný, Jan ; Bubnov, Alexej ; Janovská, Marie
This is the Book of Abstracts for the XXIV Czech-Polish Seminar (CPSEM-2022 conference) held in Harrachov (Czech Republic) on May 23 - 27, 2022. The special objective of the conference is expressed in the conference subtitle: Structural and Ferroelectric Phase Transitions. The continuous worldwide interest to this conference series is proving that it has a respected position within the series of International/European conferences covering all interdisciplinary field of the research related to structural and ferroelectric phase transitions. At the CPSEM-2022 conference there were about 100 participants from 10 countries delivered 8 tutorial lectures for early stage researchers, 8 invited lectures and selected 34 oral contributions. More than 55 posters were presented during two poster sessions.
Emergence of dark ZnO nanorods by hydrogen plasma treatment
Remeš, Zdeněk ; Buryi, Maksym ; Sharma, Dhananjay K. ; Artemenko, Anna ; Mičová, J. ; Rezek, B. ; Poruba, A. ; Hsu, H.S. ; Potocký, Štěpán ; Babin, Vladimir
We employed a custom-built inductively coupled plasma (ICP) 13.56 MHz reactor with up to 300 W RF discharge power. Hydrothermally grown ZnO nanorods were exposed to the ICP plasma with a mixture of hydrogen and argon for up to 30 min, followed in-situ by plasma oxidation. Plasma properties were monitored by optical emission spectroscopy (OES) and by measuring the self-bias potential of the stainless steel sample holder separated from the ground by a blocking capacitor. The exciton-related UV photoluminescence of ZnO nanorods and optical absorption increases significantly after the plasma treatment. We attribute it to the complex changes of ZnO surface electronic states that also give rise to its black color visually.
Effect of the substrate crystalline orientation on the surface morphology and boron incorporation into epitaxial diamond layers
Voves, J. ; Pošta, A. ; Davydova, Marina ; Laposa, A. ; Povolný, V. ; Hazdra, P. ; Lambert, Nicolas ; Sedláková, Silvia ; Mortet, Vincent
Epitaxial growth of diamond is critically important for the fabrication of diamond-based electronic devices. The emerging study of the epitaxial diamond growth on the (113) vicinal surfaces evidences highly needed high growth rates and low structural defects concentrations with both p- and n-type doping. In this work, we compare the morphology and dopant concentration incorporation of heavily boron-doped (113) epitaxial diamond layers with conventionally studied (100) and (111) epitaxial layers. Epitaxial layers were grown using resonance cavity Microwave Plasma Enhanced Chemical Vapor Deposition (MWPECVD) system. The surface morphology of epitaxial layers was studied by optical microscopy and atomic force microscopy, whereas the boron incorporation homogeneity was determined by Raman spectroscopy mapping.
Growth and properties of diamond films prepared on 4-inch substrates by cavity plasma systems
Babčenko, Oleg ; Potocký, Štěpán ; Aubrechtová Dragounová, Kateřina ; Szabó, Ondrej ; Bergonzo, P. ; Rezek, B. ; Kromka, Alexander
We compare two microwave (2.45 GHz) plasma systems with ellipsoidal and multimode clamshell cavity for diamond synthesis by chemical vapor deposition. We use H2/CH4/CO2 gas mixture for diamond film deposition on Si <100> wafers. Both systems are capable of high pressure (up to 20 kPa) operation and high growth rates (several µm/h). We compare the cavity systems from the point of diamond quality (Raman shift measurement), substrate size (2” versus 4”) and grown film homogeneity together with surface morphology (SEM), deposition rate and parasitic doping levels (photoluminescence).
Plasma hydrogenation of hydrothermally grown ZnO micropods
Remeš, Zdeněk ; Aubrechtová Dragounová, Kateřina ; Mičová, J.
The hydrothermally grown ZnO micropods have been placed on grounded stainless-steel holder and exposed to an inductively coupled plasma (ICP) monitored in-situ by optical emission spectroscopy (OES). OES shows the immediate release of oxygen during Ar ion bombardment. The prolonged exposure to hydrogen plasma leads to deterioration of the optical properties as well. The exposure, rf power and hydrogen pressure have been optimized to enhance UV-photoluminescence peak at the wavelength 384 nm related to surface bounded excitons and reduce the defect-related photoluminescence in red spectral range. The strong UV photoluminescence appears just after 1 minute of plasma hydrogenation in a radio frequency plasma discharge with power density 40 W/dm3 and hydrogen pressure 17 Pa.

Národní úložiště šedé literatury : Nalezeno 20 záznamů.   1 - 10další  přejít na záznam:
Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.