National Repository of Grey Literature 13 records found  previous11 - 13  jump to record: Search took 0.01 seconds. 
Influence of catchment spatial subdivision on the accuracy of the snow accumulation and snowmelt model
Hájková, Barbora ; Jeníček, Michal (advisor) ; Šípek, Václav (referee)
Influence of catchment spatial subdivision on the accuracy of the snow accumulation and snowmelt model Abstract This thesis is focused on influence of catchment spatial subdivision on the accuracy of rainfall-runoff model simulations. A hydrological model HEC-HMS developed by U.S. Army Corps of Engineers was applied in the thesis. Study area includes two experimental catchments; Bystřice River basin and Zlatý Brook basin. Both catchments are located in the Krušné Mountains. The research in catchments has been carried out by the Department of Physical Geography and Geoecology since 2008. The influence of four different horizontal and vertical catchments delineation on runoff simulations was analyzed. The simulations were performed in two two-year periods 11/2008-10/2010 and 11/2010-10/2012. The attention was mainly aimed to snowmelt component of the model, for which temperature index method was chosen. The results of simulations were compared with water stages data measured in catchments outlets and with data from winter field measurements (snow depth and snow water equivalent). The results from both catchments showed that higher accuracy of simulation of the snow water equivalent was reached by dividing the catchments into more elevation zones. However, each of the catchments behaved in different way. The...
Application of the Snowmelt Runoff Model for snow accumulation and snowmelt modelling in experimental catchments Bystřice and Zlatý Brook in the Krušné Mountains
Šedivá, Kateřina ; Jeníček, Michal (advisor) ; Ducháček, Libor (referee)
Title: Application of the Snowmelt Runoff Model for snow accumulation and snowmelt modelling in experimental catchments Bystřice and Zlatý Brook in the Krušné Mountains Modelling of hydrological processes is a dynamically developing part of hydrology. The Snowmelt Runoff Model (SRM) was applied for modelling the runoff in two experimental catchments Bystřice and Zlatý Brook. The aim of this thesis is to set up and calibrate SRM model and to evaluate methods and procedures used for runoff simulations. The SRM model was used for modelling snow accumulation and snowmelt in two selected catchments in the Krušné Mountains. The snow depths and snow water equivalents are measured since 2009 at selected locations situated in catchments. Calibration and validation of the model was based on continual time series of precipitation, air temperature and discharge measured 2009. Hydrological years 2009 and 2010 were used for model calibration and hydrological years 2011 and 2012 were used for model validation. Sensitivity analysis, which quantifies the effect of individual model parameters on the simulating proces, was carried out based on results. Recession coefficient and runoff coefficient belong to the most sensitive parameters with highest impact on runoff simulations. Model calibration was successful, which...
Effect of snowpack on runoff generation during rain on snow event.
Juras, Roman ; Máca, Petr (advisor) ; Ladislav , Ladislav (referee)
During a winter season, when snow covers the watershed, the frequency of rain-on-snow (ROS) events is still raising. ROS can cause severe natural hazards like floods or wet avalanches. Prediction of ROS effects is linked to better understanding of snowpack runoff dynamics and its composition. Deploying rainfall simulation together with hydrological tracers was tested as a convenient tool for this purpose. Overall 18 sprinkling experiments were conducted on snow featuring different initial conditions in mountainous regions over middle and western Europe. Dye tracer brilliant blue (FCF) was used for flow regime determination, because it enables to visualise preferential paths and layers interface. Snowpack runoff composition was assessed by hydrograph separation method, which provided appropriate results with acceptable uncertainty. It was not possible to use concurrently these two techniques because of technical reasons, however it would extend our gained knowledge. Snowmelt water amount in the snowpack runoff was estimated by energy balance (EB) equation, which is very efficient but quality inputs demanding. This was also the reason, why EB was deployed within only single experiment. Timing of snowpack runoff onset decrease mainly with the rain intensity. Initial snowpack properties like bulk density or wetness are less important for time of runoff generation compared to the rain intensity. On the other het when same rain intensity was applied, non-ripe snowpack featuring less bulk density created runoff faster than the ripe snowpack featuring higher bulk density. Snowpack runoff magnitude mainly depends on the snowpack initial saturation. Ripe snowpack with higher saturation enabled to generate higher cumulative runoff where contributed by max 50 %. In contrary, rainwater travelled through the non-ripe snowpack relatively fast and contributed runoff by approx. 80 %. Runoff prediction was tested by deploying Richards equation included in SNOWPACK model. The model was modified using a dual-domain approach to better simulate snowpack runoff under preferential flow conditions. Presented approach demonstrated an improvement in all simulated aspects compared to the more traditional method when only matrix flow is considered.

National Repository of Grey Literature : 13 records found   previous11 - 13  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.