National Repository of Grey Literature 14 records found  previous11 - 14  jump to record: Search took 0.00 seconds. 
Strong coupling in plasmonic antennas
Beneš, Adam ; Křápek, Vlastimil (referee) ; Kejík, Lukáš (advisor)
Localized surface plasmons generated by ilumination of metallic nanostructures focuses light into nanoscale regions where it can interacts with other nanoobjects nearby. This bachelor's thesis focuses on fabrication of plasmonic antennas suitable for strong coupling with non-conductive or semiconductor nanostructures such as dye molecules or quantum dots in visible range. At first we put forward some theoretical background and summary of strong coupling systems. In the main section we describe process of fabrication and characterization of plasmonics antennas as well as deposition methods for emitors. Lastly, we study interactions in our systems using spectroscopic measurements and strong coupling is realized using FDTD simulations.
Strong Coupling in Plasmonic Structurers
Gryga, Michal ; Brzobohatý, Oto (referee) ; Šikola, Tomáš (advisor)
This diploma thesis deals with numerical simulations of the optical response of plasmonic infrared antennas placed on silicon substrates with thin film of silicon dioxide and subsequently with fitting of scattering spectra by model of coupled harmonic oscillators. In this work, we study an influence of length of antennas on the strength of coupling of localized surface plasmons in the antennas with phonons in silicon dioxide film. Also, the influence of silicon dioxide film thickness on this coupling is investigated.
Optical response of infrared plasmonic antennas in presence of silicon dioxide thin film
Biolek, Vladimír ; Dubroka, Adam (referee) ; Kvapil, Michal (advisor)
The diploma thesis deals with the optical response of resonant infrared antennas on silicon dioxide thin film. At first, theory of electromagnetism at metal/dielectric interfaces is described. In the next part, experimental and numerical methods used in the thesis are described and strong coupling between two systems is explained. In the final part of the thesis, the optical response of resonant infrared antennas on a silicon dioxide thin film is studied by Fourier transform Infrared Spectroscopy and FDTD simulations which both show the strong coupling between localized plasmons and phonons in silicon dioxide.
Quantum description of superradiance of emitters with plasmon-mediated interaction
Olivíková, Gabriela ; Chvátal, Lukáš (referee) ; Křápek, Vlastimil (advisor)
Superradiance is an enhanced decay of an excited system of emitters resulting from their mutual coupling. This thesis is focused on superradiance of the emitters coupled via their interaction with a plasmonic nanoparticle. So-called plasmon-mediated superradiance results in even stronger enhancement of the decay rate as the nanoparticle serves as an additional decay chanel. We have developed a quantum model of the system of emitters coupled to a plasmonic nanoparticle, which allows us to differentiate between a pure dephasing and decay processes. We show that the pure dephasing can destroy the cooperative effect leading to superradiance. Furthermore, we have studied how the direct mutual coupling between emitters affects time evolution of the system in dependence on its configuration, and we show conditions when a decay of the system is dramatically decreased by direct coupling.

National Repository of Grey Literature : 14 records found   previous11 - 14  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.