National Repository of Grey Literature 13 records found  previous11 - 13  jump to record: Search took 0.02 seconds. 
Optimization of electrochemical sensor for detection in microvolume
Gajdoš, Libor ; Pekárek, Jan (referee) ; Prášek, Jan (advisor)
This thesis describes optimization and modification of standard thick-film electrochemical sensor to be able to be used for detection in microvolumes. In the theoretical part, the thick film technology is described. The work is then focused on the wettability of surfaces followed by introduction to electrochemistry and electro-analytical methods. In the experimental part, screen-printing of various types of thick film pastes on ceramic substrates for determination of their wettability and the following modification of the sensors with thick-film paste and with Parylene vaporization can be found, as well as the basic electrochemical measurements in microvolume using the modified sensor. Finally the results are summarized in conclusion.
Barier films based on polyparaxylylene and their properties
Horák, Jakub ; Mazánková, Věra (referee) ; Přikryl, Radek (advisor)
This diploma thesis is focused on preparation and characterization of parylene C barrier properties. The layers were prepared by chemical vapour deposition (CVD). The interest in characterization of those layers is huge mainly because of their possible use in museology for the protection of the museum archives against the corrosion. Chlorinated dimer of para-xylylene was used as a precursor. Polypropylene foils, metal sheets and silica wafers were used as tested substrates for thin film preparation. Polypropylene foils were used for oxygen transmission rate measurements, metal sheets were used for corrosion tests and silica wafers were used for Fourier transform infrared spectroscopy (FTIR), confocal laser scanning microscopy (CLSM), scanning electron microscopy (SEM) and stylus profilometry.
Poly-para-xylylene films preparation and characterization of their properties
Menčík, Přemysl ; Salyk, Ota (referee) ; Přikryl, Radek (advisor)
Poly-p-xylylene is a basic polymer of parylene family. It was discovered in 50s of the 20th century. In practical applications, there are used several derivates. Most of them are discussed in this thesis. Poly-p-xylylene has many utility properties, like barrier, thermal and mechanical properties. It can be used for conservation and protection of electronic equipments, medical tools and devices or museum exhibits. The most important property of parylene is its low dielectric constant which enables parylene to have good insulating properties in form of very thin layer. The most common precursor used for parylene coatings by Chemical Vapor Deposition (CVD) is [2,2]paracyclophane. Special device invented for this process was described in this thesis, including every part and assembly. The main aim of this thesis was to test properties of thin parylene layers on metal samples. High degree of polymer crystallinity was confirmed by confocal laser microscopy and optical microscopy in the polarized light measurements. Problems in the conventional method of production of parylene layers were found during the measurement of thickness of layers. Purity of deposited films was determined using Infrared spectroscopy (IR). Parylene barrier properties were quantified by the measurement of Oxygen Transmission Rate through a layer deposited on the surface of PP foil. Because the research has been mainly focused on protection of museum exhibits, the corrosion resistance test is the most important. Metal samples with thin parylene film were compared to samples with conventional restoration coating. The samples with parylene protection were slowly corroded by point corrosion. In contrast to them, the samples conserved by conventional restoration method were almost destroyed by corrosion.

National Repository of Grey Literature : 13 records found   previous11 - 13  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.