National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
EFFECT OF HIP ON LOW CYCLE FATIGUE OF MAR-M247 AT 900°C
Šulák, Ivo ; Obrtlík, Karel ; Škorík, Viktor ; Hrbáček, K.
Polycrystalline nickel-base superalloy MAR-M247 is used for high temperature applications requiring excellent combination of fatigue properties, creep resistance and surface stability. These superior high temperature characteristics derive from the microstructure which habitually consists of face centred cubic matrix γ and precipitate γ´ (L12 type ordered structure). In the present work, the high temperature low cycle fatigue behaviour of cast nickel-base superalloy MAR-M247 in as received condition and in hot isostatically pressed (HIP) condition was studied. The microstructure of the materials is characterized by dendritic grains, carbides and casting defects. Distribution and size of defects in both materials were studied. Isothermal low cycle fatigue (LCF) tests were performed on cylindrical specimens under total strain control at 900°C in air. Cyclic stress–strain response and fatigue life of both materials were assessed. Beneficial effects of HIP process on cyclic stress-strain and fatigue life curves are discussed.
Changes in dislocation substructure of S235JR steel during fatigue loading
Jandová, D. ; Gajdoš, Lubomír ; Šperl, Martin ; Kaiser, J.
Changes in dislocation substructure were studied in normalized and annealed S235JR steel in relation to the number of symmetrical reversed stress cycles with the amplitude σa = 242 MPa and corresponding mean life Nf = 17,950 cycles. The microstructure of the steel consisted of ferrite with a small amount of pearlite. The substructure was observed in as received condition and after application of various relative numbers of cycles n/Nf, these being 0.25, 0.50 and 0.75. An irregular dislocation net occurred in the virgin specimen, however, during cyclic loading the dislocations started to accumulate gradually in slip bands and to form a cell substructure in grains of favourable crystallographic orientations. Total dislocation density, dislocation density in slip bands and inter-band distance were measured using transmission electron microscopy (TEM). The total dislocation density was found to slightly decrease and the density in slip bands to increase with increasing number of cycles. The results concerning the dislocation density were compared with changes in the microplastic limit (MPL) which were determined by the measurement of the inductance of the “specimen - coil” system. They consisted in a rapid initial decrease at the first stage of the fatigue process and in a gradual increase during the major part of the life. These changes can be interpreted on the basis of changes in dislocation density as was verified independently by X-ray diffraction and nanoindentation tests. On the basis of the measurement of dislocation density by TEM it appears that changes in MPL can be connected with the dislocation density in slip bands rather than with the total dislocation density.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.