National Repository of Grey Literature 48 records found  1 - 10nextend  jump to record: Search took 0.00 seconds. 
Neurogeneze a gliogeneze v dospělém mozku po ischemickém poškození
Honsa, Pavel ; Anděrová, Miroslava (advisor) ; Vyklický, Ladislav (referee) ; Mazurová, Yvona (referee)
Ischemic brain injury belongs to the most common cause of death in the developed countries. High complexity of this disorder significantly slows and limits the possible treatment. Currently, there is only one treatment available - the application of the thrombolytic, tissue plasminogen activator, while thousands of other drugs failed during clinical testing. Great expectations were seen in the stroke treatment employing neural stem cells obtained from several external sources; nevertheless, low survival rate, limited favorable outcome and enormous ethical issues complicate the application of such therapy. On the other hand, in the adult mammalian brain exist two endogenous processes - neurogenesis and gliogenesis. These processes need to be fully described and understood, in order to employ them as a source of new cells after injury. Therefore, this thesis focuses on the processes of adult neurogenesis and gliogenesis predominantly after ischemia. Adult neurogenesis and gliogenesis are processes, by which neurons or glial cells are generated from stem/progenitor cells. Both these processes are strongly influenced by brain injury; nevertheless, their contribution to regeneration after ischemia in the human brain is negligible. Here, we aimed to describe the role of polydendrocytes in the...
Neurosteroid modulation of ligand-gated ion-channel activity
Krausová, Barbora ; Vyklický, Ladislav (advisor) ; Moravec, Jan (referee)
The term neurosteroids refers to steroids that are synthetized in the nervous tissue from cholesterol or steroidal precursors from peripheral sources. These compounds affect the neuronal excitability by modulating the function of some ligand-gated ion channels. NMDA (N methyl D aspartate) receptors are glutamate gated ion channels involved in excitatory synaptic transmission, synaptic plasticity and excitotoxicity. GABAA ( aminobutyric acid type A) receptors mediate most of the inhibitory synaptic transmission in the mammalian brain and are targeted by many clinically important drugs. Function of NMDA and GABAA receptors can by affected by neurosteroids, both positively and negatively. The aim of this work is to summarize the current knowledge about the neurosteroid effects on the function of GABAA a NMDA receptors and suggest the physiological role and the potential therapeutic use of the neurosteroids as a regulator of some functions of the central nervous system.
Function of the GABA and glycine receptors in the mammalian MNTB
Hrušková, Bohdana ; Tureček, Rostislav (advisor) ; Vyklický, Ladislav (referee) ; Horák, Martin (referee)
GABA and glycine are major inhibitory neurotransmitters in the central nervous system. They act on ionotropic and metabotropic receptors that form oligomeric complexes in plasma membrane of neuronal cells. Pharmacological properties, subcellular distribution and function of GABA and glycine receptors depend on their subunit composition. The thesis was aimed to find subunit composition and physiological role of ionotropic glycine and metabotropic GABAB receptors in neurons of medial nucleus of trapezoid body, MNTB. The nucleus resides in the mammalian auditory brainstem and it is characterized by well defined excitatory and inhibitory inputs. Excitatory fibers form giant glutamatergic nerve terminals, calyces of Held, whereas inhibitory fibers form small GABA/glycinergic boutons. Both types of afferents innervate somatodenritic parts of MNTB principal neurons. The nucleus thus represents a suitable model for studying molecular and cellular mechanisms of interactions between excitation and inhibition. Our experiments were performed using electrophysiology and immunohistochemistry methods. Patch clamp technique was used to record membrane currents and voltages from neurons in live MNTB slices isolated from rats or mice. Spontaneous and sound-evoked activity of murine MNTB neurons was recorded by in...
Věkové a pohlavní rozdíly v GABAergní transmisi v substantia nigra pars reticulata u krys.
Chudomel, Ondřej ; Bojar, Martin (advisor) ; Vyklický, Ladislav (referee) ; Mareš, Pavel (referee)
Many experimental as well as clinical studies have shown that subcortical neuronal circuitries including the anterior part of the substantia nigra pars reticulata (SNR) are closely involved in the control of seizures propagation and termination. In vivo studies in rats demonstrated that inhibition of the GABAergic SNRA electrical output increases the seizure threshold in the flurothyl model of generalized clonic seizures. The anticonvulsant properties of the SNRA are largely age- and sex-depended. In the current experiments were used 3 age groups of Sprague Dawley rats (PN5-9, PN11-16 and PN25-32 days, PN = postnatal) to study GABAergic inhibition. Two types of GABAergic inhibition were studied: a) a synaptic inhibition, which is generated by α1 and α3-containing GABAARs and b) a tonic inhibition mediated by extrasynaptic δ subunit-containing GABAARs. Immunohistochemistry showed that the α1 subunit expression was generally more abundant in adult rats and females while the α3 subunit dominated in the early development and gradually decreased by the age of PN30. The more α1 subunit was expressed the faster were the kinetics, higher the mean amplitudes and frequencies of spontaneous inhibitory postsynaptic currents (sIPSCs). The α subunit subtype underlies sensitivity to zolpidem, which preferentially...
Membrane properties of neural stem/progenitor cells during in vitro differentiation and after transplantation into the rat brain
Prajerová, Iva ; Chvátal, Alexandr (advisor) ; Vyklický, Ladislav (referee) ; Mazurová, Yvona (referee)
AOSTRACT The aim oflhis .....orl:. was to elucidate the dilTercntiation mechanisms of neural stcmlpmgenitor cells in vitro and their potentiallO survive and ditfcn:ntiate in \'il'o, al\er trarlSplnntatioo into thc injured mt conex. IImnunohistochcmistI)' "'lIS used for cell idcntiticatioos. and lhe p'0pCl ties ofK' aod Na' voltagc-gated ion ehnnnels were studiC<! using the pat,h-(:Iamp teclmique, We Ilave demonstrnted lhal inunortalised green lluort:SCCnll)r()lein (GFP)INE-4C neural stem cells derivtXI fmm tbc neurocpithelium of p5l'<lctieicm mouse cmbryos iII cmbryonic day (E)9 are ablc to dilferentiate i"to !leUrQns in \1"0, After tmnsplantalioo illto the site of a photlxhcmical lC'iion of aduh rol5, GFP!NE4C cdls slIn'ive and give Tise to neurons. astrocytt5 and oHgodmdrocytcs. Prima!)' embryonic ncura.l Slem cells were isoLaled frum O6IGFP ntice, in which GFP is expressed un(\cr tbc IXlfItrol of06. 11 promoter of thc mDachl gene. which is in\'Olved in tbe development of Ihc concx. At E1 2. D6 is specifically exprcssed in loc neurd.! stem cclLs of the (\(nal tclcnocephalon. from whieh cortical neurons arise, We have shown lila! D61GFP neurJI stem odLs isolated fmm 1312 embfyos are able to give rlse to neuroos and glial fibrillary acidic protcin (GFAP)-posilivc cel1s ill \'i"o nnd that after...
Characterization of the effect of pregnanolone sulfate and its derivatives on NMDA receptors.
Švehla, Pavel ; Vyklický, Ladislav (advisor) ; Blahoš, Jaroslav (referee)
N-methyl-D-aspartate (NMDA) receptors are a subtype of receptors for major excitatory neurotransmitter glutamate in the central nervous system. Their activity is regulated by variety of allosteric modulators, including endogenous neurosteroids and their synthetic analogues. NMDAreceptor dysfunction is implicated in various forms of neurodegeneration and inhibitory neurosteroids have unique therapeutic potential to act as neuroprotective agens. The aim of this work is to investigate relationship between structure and function of neurosteroids with modifications in the D-ring region, using whole-cell patch clamp recording at recombinant GluN1/GluN2B receptors. In this work, we characterised inhibition effect of 19 neurosteroid analogues on NMDA receptor activity and found several of them to be potent NMDA receptor inhibitors. According to our results, there is a linear relationship of IC50 and lipophilicity of a neurosteroid compound, suggesting the plasma membrane plays an important role in neurosteroid access to NMDA receptor. Indeed, using capacitance recording configuration in combination with amphipathic molecule gamma-cyclodextrin, we were able to separate the kinetic of neurosteroid membrane binding from receptor binding. Moreover, these experiments showed that neurosteroid accumulation in the...
Metabotropic glutamate receptors: mechanism of activation
Hlaváčková, Veronika ; Blahoš, Jaroslav (advisor) ; Vyklický, Ladislav (referee) ; Martásek, Pavel (referee) ; Konvalinka, Jan (referee)
Any living organism receives constantly many signals that have to be evaluated and weighted to respond in an appropriate way. To perform all functions needed for precise control of homeostasis and for communication with the surrounding environment, signals coming from the outside are recognized and transferred into modulation of intracellular signaling cascades. These mediate response to the extracellular stimulus as well as intercellular communication. Cell communication is mediated by several types of receptors, located either intracellularly (including nuclear receptors) that modulate gene transcription and receptors localized on plasma membrane. Cell membrane receptors are transmembrane proteins that are divided into three superfamilies according to their structure and principles of signal transduction. These are ion channel-linked receptors, enzyme-linked receptors and G-protein-coupled receptors (GPCRs). GPCRs comprise the biggest family of membrane receptors and are one of the largest gene families in general. They are encoded by about 1% of genes in mammals. Many of them bind sensory ligands (rhodopsin, taste and olfactory receptors), but others also recognize ions, amino acids, nucleotides, peptides and large glycoproteins (1). They play a crucial role in such distant physiological functions as...
Ionotropic glutamate receptors and excitotoxicity
Skřenková, Kristýna ; Vyklický, Ladislav (advisor) ; Moravec, Jan (referee)
Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system and its excitatory role is mediated trough activation of glutamatergic ionotropic receptors which are responsible for synaptic transmission and play an important role in learning and memory formation. However, excessive exposure to glutamate can result in excitotoxicity which may lead to cell death. The following text is focused on one group of glutamate receptors - NMDA receptors. The study of the receptors is in the centre of current neurobiology research because there is a series of experimental and clinical evidences that they directly participate in the development of serious diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease and may cause neuronal damage in trauma, hypoxia and embolia. The aim of this bachelor thesis is to give a brief overview of current knowledge about the structure and function of NMDA receptors and mechanisms of their activation which leads to excitotoxicity and related neuroprotection.

National Repository of Grey Literature : 48 records found   1 - 10nextend  jump to record:
Interested in being notified about new results for this query?
Subscribe to the RSS feed.