Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Ab-initio study of surface energies and structural influece of vacancies in titanium nitride nanolayer
Lebeda, M. ; Vlčák, P. ; Veřtát, P. ; Drahokoupil, Jan
The surface energies of 8 crystallographic planes and effects of nitrogen vacancies on the lattice parameter in rock salt-like structure of TiN (σ-TiN) were studied using ab-initio method of density functional theory (DFT) with the generalized gradient approximation functional (GGA) as parametrized by Perdex, Burke and Ernzerhof (PBE). The linear decrease of lattice parameter with the increasing presence of nitrogen vacancies up to ca. 80% was observed.\n
Microstructure and mechanical properties of the potentially biodegradable ternary system Zn-Mg0. 8-Ca0.2
Pinc, Jan ; Čapek, Jaroslav ; Kubásek, J. ; Veřtát, Petr ; Hosová, K.
Zinc and zinc alloys exhibit suitable corrosion properties for biodegradable implants. Insufficient mechanical properties (for some applications) or low biocompatible Zn2+ concentrations can be modified by the alloying by essential elements like magnesium, calcium or strontium. The alloying elements also enhance the biocompatibility of zinc due to a decrease of Zn2+ release which could be toxic in a concentration exceeding 100 µM. In this study, the microstructure and hardness of a potentially biodegradable alloy ZnMg0.8Ca0.2 were observed in relation to different cooling rates. It was found that zinc dendrites, Mg2Zn11 (MgZn2) and CaZn13 phases occur in the material structure. The micro-hardness measurements revealed constant hardness of the particular phases, however, the macro-harness slightly decreased with the decreasing cooling rate due to changes in phase sizes and distribution.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.