Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.00 vteřin. 
Navození cirkadiánního rytmu u hlodavců
Sosniyenko, Serhiy ; Sumová, Alena (vedoucí práce) ; Mareš, Jan (oponent) ; Šauman, Ivo (oponent)
The circadian clock located within the suprachiasmatic nuclei (SCN) of the hypothalamus responds to changes in the duration of day length, i.e. photoperiod, differently in the separate SCN parts. The aim of the study was i) to compare the effect of a long and a short photoperiod with twilight relative to that with rectangular light-to-dark transition on the daily profiles of clock gene expression and their protein levels within the rostral, middle and caudal regions of the mouse SCN; ii) to elucidate the dynamics of adjustment to a change of a long photoperiod to a short photoperiod of clock gene expression rhythms in the mouse SCN and in the peripheral clock in the liver, as well as of the locomotor activity rhythm; iii) to elucidate whether and how swiftly the immature rat fetal and neonatal molecular SCN clocks can be reset by maternal cues and iv) to reveal when and where within the rat SCN the photic sensitivity of clock gene expression develops during the early postnatal ontogenesis and to compare it with development of cfos photoinduction. Mice and rats were used for experiments; their tissues were analyzed by in situ hynridization, immunohistochemistry, RT-PCR. The data indicated that i) the twilight photoperiod provides stronger synchronization among the individual SCN cell subpopulations than the...
Navození cirkadiánního rytmu u hlodavců
Sosniyenko, Serhiy ; Sumová, Alena (vedoucí práce) ; Mareš, Jan (oponent) ; Šauman, Ivo (oponent)
The circadian clock located within the suprachiasmatic nuclei (SCN) of the hypothalamus responds to changes in the duration of day length, i.e. photoperiod, differently in the separate SCN parts. The aim of the study was i) to compare the effect of a long and a short photoperiod with twilight relative to that with rectangular light-to-dark transition on the daily profiles of clock gene expression and their protein levels within the rostral, middle and caudal regions of the mouse SCN; ii) to elucidate the dynamics of adjustment to a change of a long photoperiod to a short photoperiod of clock gene expression rhythms in the mouse SCN and in the peripheral clock in the liver, as well as of the locomotor activity rhythm; iii) to elucidate whether and how swiftly the immature rat fetal and neonatal molecular SCN clocks can be reset by maternal cues and iv) to reveal when and where within the rat SCN the photic sensitivity of clock gene expression develops during the early postnatal ontogenesis and to compare it with development of cfos photoinduction. Mice and rats were used for experiments; their tissues were analyzed by in situ hynridization, immunohistochemistry, RT-PCR. The data indicated that i) the twilight photoperiod provides stronger synchronization among the individual SCN cell subpopulations than the...

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.