|
Synthesis and biochemical characterization of hybrid analogues of human insulin and IGF-2
Povalová, Anna ; Stiborová, Marie (advisor) ; Koberová, Monika (referee)
The ever-increasing occurrence of diabetes mellitus brings about the need for development of new therapeutic agents to provide adequate treatment for patients. An important element in this research area is elucidation how insulin works, mainly in connection with insulin-like growth factors (IGF-1 and IGF-2), which show significant structural homology to each other. In addition, their respective receptors - insulin receptor (IR) and receptor for IGF-1 and IGF-2 (IGF-1R) - exhibit very high similarity. As a result, IGF-1 and IGF-2 can bind to IR and insulin can bind to IGF-1R. Of a particular importance is the high affinity binding of IGF-2 to the isoform A of IR. Unlike insulin, which predominantly mediates glucose entry into cells, IGFs induce growth or mitogenic effects. The finding which structural determinants in insulin and IGFs are responsible for the differences in the activation of their cognate receptors could provide an explanation for different functional responses upon binding of these hormones to different target cells. Understanding of this mechanism could also help in the development of functionally selective analogues of these hormones. The aim of this study was the synthesis and characterization of analogues of human insulin extended at the C terminus of the B chain with the amino...
|
|
Insulin analogues with A-chain extended by the D-domain of IGF-1 and IGF-2
Povalová, Anna ; Stiborová, Marie (advisor) ; Dračínská, Helena (referee)
Insulin and insulin-like growth factors (IGF-1 and -2) together with their receptors take part in a complex system, which affects both basal metabolism of carbohydrates, lipids and proteins as well as cell growth, proliferation, differentiation and apoptosis. Defects in action of insulin or IGFs can lead to serious diseases such as diabetes or cancer. Both of these disorders represent nowadays one of the biggest health threats to the world's population. Insulin and IGFs induce different biological effects through their cognate receptors; two isoforms of the insulin receptor (IR-A and IR-B) and the receptor for IGF-1 (IGF-1R). These receptors bind insulin and IGFs with different affinities and induce different but partially overlapping signalling events leading towards metabolic (especially insulin) or mitogenic responses (IGFs and insulin). To understand the mechanism of action of insulin and IGFs it is important to specify which structural domains of these hormones are responsible for binding to the receptors and exerting specific effects. One region that is missing in insulin is the D-domain of IGF-1 and -2. For this reason, we decided to prepare insulin analogues with the A-chain extended by either the whole D-domain of IGF-1 or IGF-2, or by fragments of the IGF-1 D-domain in order to define the...
|
|
Synthesis and biochemical characterization of hybrid analogues of human insulin and IGF-2
Povalová, Anna ; Stiborová, Marie (advisor) ; Koberová, Monika (referee)
The ever-increasing occurrence of diabetes mellitus brings about the need for development of new therapeutic agents to provide adequate treatment for patients. An important element in this research area is elucidation how insulin works, mainly in connection with insulin-like growth factors (IGF-1 and IGF-2), which show significant structural homology to each other. In addition, their respective receptors - insulin receptor (IR) and receptor for IGF-1 and IGF-2 (IGF-1R) - exhibit very high similarity. As a result, IGF-1 and IGF-2 can bind to IR and insulin can bind to IGF-1R. Of a particular importance is the high affinity binding of IGF-2 to the isoform A of IR. Unlike insulin, which predominantly mediates glucose entry into cells, IGFs induce growth or mitogenic effects. The finding which structural determinants in insulin and IGFs are responsible for the differences in the activation of their cognate receptors could provide an explanation for different functional responses upon binding of these hormones to different target cells. Understanding of this mechanism could also help in the development of functionally selective analogues of these hormones. The aim of this study was the synthesis and characterization of analogues of human insulin extended at the C terminus of the B chain with the amino...
|