Žádný přesný výsledek pro Li,, Jing nebyl nalezen, zkusme místo něj použít Li Jing ...
Národní úložiště šedé literatury Nalezeno 2 záznamů.  Hledání trvalo 0.02 vteřin. 
Theoretical Study of Magnetic Anisotropy in MgO-based Magnetic Tunnel Junctions
Vojáček, Libor ; Li,, Jing (oponent) ; Chshiev,, Mairbek (vedoucí práce)
A magnetic tunnel junction (MTJ) is a spintronic device commercially used in highly sensitive hard disk drive reading heads. Since 2007 it has helped to sustain the exponential increase in the magnetic storage density. Moreover, it also became the building block of the fast, durable, power-efficient, and non-volatile magnetic random-access memory (MRAM). Just like reading heads, this new type of solid-state memory uses MTJs based on crystalline magnesium oxide (MgO) along with 3d metallic magnetic elements (Fe and Co). Strong magnetic anisotropy in the direction perpendicular to the metal|MgO interface is needed to provide long-term thermal memory stability as the device is downscaled. This work will analyze the magnetocrystalline anisotropy (MCA) of body-centered cubic Fe, Co, and Ni on MgO using ab initio simulations. Numerical code will be developed to calculate the shape anisotropy, crucial to consider in addition to MCA, because together they add up to the effective anisotropy. Finally, a calculation of MCA based on the second-order perturbation theory will be implemented. This will enable us to link the observed anisotropic properties directly to the system’s electronic structure (the band structure and density of states).
Theoretical Study of Magnetic Anisotropy in MgO-based Magnetic Tunnel Junctions
Vojáček, Libor ; Li,, Jing (oponent) ; Chshiev,, Mairbek (vedoucí práce)
A magnetic tunnel junction (MTJ) is a spintronic device commercially used in highly sensitive hard disk drive reading heads. Since 2007 it has helped to sustain the exponential increase in the magnetic storage density. Moreover, it also became the building block of the fast, durable, power-efficient, and non-volatile magnetic random-access memory (MRAM). Just like reading heads, this new type of solid-state memory uses MTJs based on crystalline magnesium oxide (MgO) along with 3d metallic magnetic elements (Fe and Co). Strong magnetic anisotropy in the direction perpendicular to the metal|MgO interface is needed to provide long-term thermal memory stability as the device is downscaled. This work will analyze the magnetocrystalline anisotropy (MCA) of body-centered cubic Fe, Co, and Ni on MgO using ab initio simulations. Numerical code will be developed to calculate the shape anisotropy, crucial to consider in addition to MCA, because together they add up to the effective anisotropy. Finally, a calculation of MCA based on the second-order perturbation theory will be implemented. This will enable us to link the observed anisotropic properties directly to the system’s electronic structure (the band structure and density of states).

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.