Národní úložiště šedé literatury Nalezeno 5 záznamů.  Hledání trvalo 0.00 vteřin. 
Instrumentation for study of nanomaterials in NPI REZ (New laboratory for material study in Nuclear Physics Institute in REZ)
Bejšovec, Václav ; Cannavó, Antonino ; Ceccio, Giovanni ; Hnatowicz, Vladimír ; Horák, Pavel ; Lavrentiev, Vasyl ; Macková, Anna ; Tomandl, Ivo ; Torrisi, Alfio ; Vacík, Jiří
Nano-sized materials become irreplaceable component of a number of devices for every aspect of human life. The development of new materials and deepening of the current knowledge require a set of specialized techniques-deposition methods for preparation/modification of the materials and analytical tools for proper understanding of their properties. A thoroughly equipped research centers become the requirement for the advance and development not only in nano-sized field. The Center of Accelerators and Nuclear Analytical Methods (CANAM) in the Nuclear Physics Institute (NPI) comprises a unique set of techniques for the synthesis or modification of nanostructured materials and systems, and their characterization using ion beam, neutron beam and microscopy imaging techniques. The methods are used for investigation of a broad range of nano-sized materials and structures based on metal oxides, nitrides, carbides, carbon-based materials (polymers, fullerenes, graphenes, etc.) and nano-laminate composites (MAX phases). These materials can be prepared at NPI using ion beam sputtering, physical vapor deposition and molecular beam epitaxy. Based on the deposition method and parameters, the samples can be tuned to possess specific properties, e.g., composition, thickness (nm-μm), surface roughness, optical and electrical properties, etc. Various nuclear analytical methods are applied for the sample characterization. RBS, RBS-channeling, PIXE, PIGE, micro-beam analyses and Transmission Spectroscopy are accomplished at the Tandetron 4130MC accelerator, and additionally the Neutron Depth Profiling (NDP) and Prompt Gamma Neutron Activation (PGNA) analyses are performed at an external neutron beam from the LVR-15 research reactor. The multimode AFM facility provides further surface related information, magnetic/electrical properties with nano-metric precision, nano-indentation, etc.
Production and characterization of micro-size pores for ion track etching applications
Cannavó, Antonino ; Havránek, Vladimír ; Lavrentiev, Vasyl ; Torrisi, L. ; Cutroneo, Mariapompea ; Ceccio, Giovanni ; Torrisi, Alfio ; Horák, Pavel ; Vacík, Jiří
For many years the applications of ion track etch materials have increased considerably, like charged particles detection, molecular identification with nanopores, ion track filters, magnetic studies with nanowires and so on. Over the materials generally used as track detector, the Poly-Allyl-Diglycol Carbonate (PADC), offers many advantages, like its nearly 100 % detection efficiency for charged particle, a high resistance to harsh environment, the lowest detection threshold, a high abrasion resistance and a low production costs. All of these properties have made it particularly attractive material, even if due to its brittleness, obtaining a thin film (less than 500 μm) is still a challenge. In this work, PADC foils have been exposed to a-particles emitted by a thin radioactive source of 241Am and to C ions from the Tandetron 4130 MC accelerator. The latent tracks generated in the polymer have been developed using a standard etching procedure in 6.25 NaOH solution. The dependence of the ion tracks' geometry on the ion beam energy and fluence has been evaluated combining the information obtained through a semiautomatic computer script that selects the etched ion tracks according to their diameter and mean grey value and nanometric resolution images by atomic force microscopy.
RESPONSE OF SURFACE MORPHOLOGY IN COBALT-FULLERENE MIXTURE FILMS UPON VARIATION OF THE METAL CONTENT
Lavrentiev, Vasyl ; Lavrentieva, Inna ; Vacík, Jiří
The morphology and roughness of the films show great change around some critical composition x(c) of the mixture film (x(c) approximate to 3). The films with lower Co content (x < 3) is rather smooth and the roughness is rather low. However, if x >= 3, the roughness of the CoxC60 films dramatically increases and sharp protrusions appear on the surface that reflects an important phase transformation in the film structure. The obtained AFM results define the concentration interval of the Co solubility in solid C-60 (x < 3), which was found to be narrower than that evaluated from spectroscopic experiments (see the text). This interval suggests a formation of the Co1C60 and Co2C60 fullerides in the CoxC60 mixtures where the Co atoms occupy the tetrahedral holes in the fullerene lattice. The dramatic change of the surface morphology at x >= 3 reflects the pronounced Co clustering which likely occurs due to numerical filling the octahedral pores. Formation of the protrusions on the surface of the supersaturated CoxC60 mixture films (x > 3) is a consequence of the compressive stress arising in the film due to the Co clustering.
IMPEDANCE MEASUREMENT OF GAS SENSORS WITH NICKEL(II)-AND COPPER(II)-OXIDE ACTIVE LAYERS
Horák, Pavel ; Khun, J. ; Vrňata, M. ; Bejšovec, Václav ; Lavrentiev, Vasyl ; Vacík, Jiří
Thin layers (90 nm) of nickel(II)- and copper(II)- oxide were deposited onto ceramic sensor substrates equipped with interdigital electrodes for signal reading. The deposition was carried out in two or three steps: (i) sputtering by means of Ar ion beam from pure (99.99%) metal targets, (ii) following thermal oxidation (400 degrees C for 5 h) in air, (iii) in some cases - sputtering of Pd catalyst to the surface. Then the impedance response of produced sensors (NiO, NiO+Pd, CuO, CuO+Pd) to 1000 ppm of hydrogen and 1000 ppm of methanol vapor was measured. Impedance measurements were performed in the frequency range from 40 Hz to 100 MHz. The obtained data were depicted in Nyquist representation (i.e. imaginary vs. real part of complex impedance). These diagrams have a character of one complete and one incomplete semicircle, each of them corresponding to a parallel RC-element. It was proved, that both NiO and CuO behave like p-type semiconductors; the sensor impedance increases on exposure to reducing gases. The best sensitivity was achieved on NiO+Pd sensor - during detection of hydrogen (1000 ppm) the real part of complex impedance measured at 40 Hz increased from 120 to 350 Omega.
Characterization of the Nanostructured Nickel Oxide Layers Prepared by Ion Beam Sputtering
Horák, Pavel ; Bejšovec, Václav ; Lavrentiev, Vasyl ; Khun, J. ; Vrňata, M.
Nanostructured nickel oxide layers (thickness cca 100 nm) were prepared by bombardment of nickel foil with ion beam created from a mixture of argon and oxygen. Different volume ratios of argon:oxygen mixture were used, ranging from 4:1 to 1:3. Composition of the resulting layers was analyzed by RBS, morphology by AFM and main crystal orientation of the sample by XRD. The electrophysical properties (resistivity, concentration of charge carriers) were measured by four point Van der Pauw technique and Hall measurement respectively. Prepared samples were characterized in as-deposited state and after annealing with varying temperature of treatment. Chemical composition (i.e. stoichiometry) of the as-deposited samples with different argon: oxygen ratio was related to their electrophysical parameters. Hall measurements are showing majority charge carriers to be electrons - surface concentration (0.5 - 2.3) x 10(21) m(-2) - suggesting prevailing metallic conductivity. Resistivity of the sample is increasing with higher amount of oxygen in gas mixture. The as-deposited layer is almost amorphous with no visible grains on AFM.

Chcete být upozorněni, pokud se objeví nové záznamy odpovídající tomuto dotazu?
Přihlásit se k odběru RSS.