National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
Mathematical Methods of Image Segmentation for Remote Sensing Applications
Novotný, Jan ; Klimánek, Martin (referee) ; Štarha, Pavel (referee) ; Martišek, Dalibor (advisor)
Segmentation of an image into individual tree crowns is a key step in the processing of remotely sensed data for forestry practice. The doctoral thesis gives a broad overview of this topic. It comprehends theoretical context from mathematical point of view and defines basic terms from airborne imaging and laser scanning. Mathematical methods of tree detection are focused on a robust adaptation to the actual conditions in a region of interest. A novel approach of crown area delineation is introduced, it combines a seeded region growing technique with an active contour as a crown boundary representation. The parametrisation of all algorithms is analysed in a practical half of the thesis and more application-oriented issues are mentioned. Executable computer programs are attached.
Modelling of selected forest geometric parameters from airborne laser scannig data
Sedláčková, Oldřiška ; Potůčková, Markéta (advisor) ; Klimánek, Martin (referee)
Modelling of selected forest geometric parameters from airborne laser scanning data Abstract The main aim of this work is to approximate the shape of a tree crown with mathematically describable 3D shape based on airborne laser scanning (ALS) data. And consequently derive geometrical parameters describing the tree from this model. Included in the work is a custom designed algorithm based on angular segmentation. Measured results of this algorithm are then compared to an algorithm based on RANSAC and field measurement. The first part of this work describes airborne laser scanning, its use to derive characteristics of forest stands and individual trees and the theory of tree crown modelling. The next part contains a description of both algorithms and presentation of results and field measurements. The conclusion summarizes and evaluates the outputs of the custom angular segmentation algorithm and discusses its possible modifications. Keywords: airborne laser scanning, tree height, crown width, crown height, crown cover, crown volume, crown shape, RANSAC
Mathematical Methods of Image Segmentation for Remote Sensing Applications
Novotný, Jan ; Klimánek, Martin (referee) ; Štarha, Pavel (referee) ; Martišek, Dalibor (advisor)
Segmentation of an image into individual tree crowns is a key step in the processing of remotely sensed data for forestry practice. The doctoral thesis gives a broad overview of this topic. It comprehends theoretical context from mathematical point of view and defines basic terms from airborne imaging and laser scanning. Mathematical methods of tree detection are focused on a robust adaptation to the actual conditions in a region of interest. A novel approach of crown area delineation is introduced, it combines a seeded region growing technique with an active contour as a crown boundary representation. The parametrisation of all algorithms is analysed in a practical half of the thesis and more application-oriented issues are mentioned. Executable computer programs are attached.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.