National Repository of Grey Literature 3 records found  Search took 0.00 seconds. 
The impact of mutant huntingtin on oxidative stress in primary fibroblasts isolated from a new Huntington's disease knock in porcine model
Sekáč, Dávid ; Ellederová, Zdeňka (advisor) ; Hanzlíková, Hana (referee)
Huntington's chorea is a dominantly inherited disease caused by trinucleotide (Cytosine-Adenine -Guanine) expansion in a gene coding huntingtin protein. Carriers of these mutation show symptoms associated with motor impairment, a cognitive and psychiatric disturbance, which is called Huntington's disease (HD). The major sign of HD is striatal atrophy in the middle age of life. Since it is known that huntingtin protein participates in a lot of cellular processes, such as transcriptional regulation and metabolism, these processes change by its mutation. One of the features observed in HD pathogenesis is the presence of oxidative stress. The aim of the work was to monitor the molecular changes preceding the HD manifestation in the knock-in minipig model. As a material for monitoring molecular changes leading to this condition, primary fibroblasts were used. Whereas, the oxidative stress arises from an imbalance between oxidants and antioxidants, level of reactive species and lipid peroxidation together with expression of antioxidant response associated genes was measured. At the same time, expression of metabolic and DNA repair related genes was monitored. Although the differences in oxidative stress level or the expression of antioxidative response genes were not detected, the changes in the...
The impact of mutant huntingtin on oxidative stress in primary fibroblasts isolated from a new Huntington's disease knock in porcine model
Sekáč, Dávid ; Ellederová, Zdeňka (advisor) ; Hanzlíková, Hana (referee)
Huntington's chorea is a dominantly inherited disease caused by trinucleotide (Cytosine-Adenine -Guanine) expansion in a gene coding huntingtin protein. Carriers of these mutation show symptoms associated with motor impairment, a cognitive and psychiatric disturbance, which is called Huntington's disease (HD). The major sign of HD is striatal atrophy in the middle age of life. Since it is known that huntingtin protein participates in a lot of cellular processes, such as transcriptional regulation and metabolism, these processes change by its mutation. One of the features observed in HD pathogenesis is the presence of oxidative stress. The aim of the work was to monitor the molecular changes preceding the HD manifestation in the knock-in minipig model. As a material for monitoring molecular changes leading to this condition, primary fibroblasts were used. Whereas, the oxidative stress arises from an imbalance between oxidants and antioxidants, level of reactive species and lipid peroxidation together with expression of antioxidant response associated genes was measured. At the same time, expression of metabolic and DNA repair related genes was monitored. Although the differences in oxidative stress level or the expression of antioxidative response genes were not detected, the changes in the...
Senolytics - current state
Sekáč, Dávid ; Hodný, Zdeněk (advisor) ; Zima, Michal (referee)
Cellular senescence is a state of the permanent cell cycle arrest caused by different stresses or cell to cell fusion. Senescent cells, unlike naturally aged cells, exhibit a specific phenotype, referred to as senescence associated phenotype (SASP). It is characterized by the production of biologically active substances such as interleukins, chemoattractants or proteases that affect their surroundings. Long-term survival of these cells in the body is the cause of age-related diseases. Under normal circumstances, number of senescent cells is maintained in the body by the immune system. However, the age-related abrogation of immune system function per se (immunosenescence) contributes to accumulation of senescent cells in tissues and aging of organism. This work describes origin, positive and negative effects of cell senescence, elimination of senescent cells by the immune system and current state of development of new substances causing specific lysis (killing) of senescent cells (senolytics).

Interested in being notified about new results for this query?
Subscribe to the RSS feed.