National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Expression of SANT/HTH Myb mRNA, a plant morphogenesis-regulating transcription factor, changes due to viroid infection
LOMNICKÁ, Anna
Potato spindle tuber viroid (PSTVd) belongs to plant-pathogenic, circular, non-coding RNAs. Its propagation is accompanied by (mis)regulation of host genes and induction of pathogenesis symptoms including changes of leaf morphogenesis depending on the strength of viroid variant. We found strong genotype-dependent suppression of tomato morphogenesis-regulating transcription factor SANT/HTHMyb (SlMyb) due to viroid pathogenesis. Its relative mRNA level was found to be significantly decreased in PSTVd-sensitive tomato (cvs Rutgers and Heinz 1706) due to degradation processes, but increased in PSTVd-tolerant (cv. Harzfeuer). In heterologous system of Nicotiana benthamiana, we observed a SlMyb-associated necrotic effect in agroinfiltrated leaf sectors during ectopic overexpression. Leaf sector necroses were accompanied by activation of nucleolytic enzymes but were suppressed by a strongly pathogenic PSTVd variant. Contrary to that, PSTVd's effect was inhibited by the silencing suppressor p19. It was found that in both, Solanum lycopersicum leaves and N. benthamiana leaf sectors, SlMyb mRNA degradation was significantly stronger in viroid-infected tissues. Necroses induction as well as gene silencing experiments using the SANT/HTH-Myb homologues revealed involvement of this Myb in physiological changes like distortions in flower morphogenesis and growth suppression.
Susceptibility of a hybrid sorrel to viral infections
LOMNICKÁ, Anna
The sorrel of Uteush was infected by Radish mosaic virus and Turnip yellow mosaic virus by a mechanical sap transmission. Symptoms of infection were observed. The presence of viruses were confirmed by PCR and sequencing.
Analysis of recombinant clones of apoptotic nucleases in "leaf factory" system upon coinfiltration with modifying genes
LOMNICKÁ, Anna
TBN1 is a nuclease with antitumor activity. The main goal of this work was to estimate how TBN1 and its modificated variants are stable in the ?leaf factory? system used for its production and whether it can be enhanced or influenced by chosen potential ?modificators? i. e. silencing supressors, transcription factors, glycosyltransferases and kinases. Nicotiana benthamina plants were infiltrated with the mixture of Agrobacterium tumefaciens strains bearing the nuclease plant expression vectors and co-infiltrated with the ?modifying? vectors. The nuclease and protein analyses revealed that nuclease TBN1 wt and its modificated variants are stable in the used ?leaf factory? system as to their molecular mass, only quantitative changes were detected. Expreximents showed that activity and production of the nucleases increased upon coinfiltration with silencing supressor and decreased upon coexpression with chosen transcription factor. Glycosyltransferases and kinases influenced activity and production only insignificantly. The experiments also revealed that modificated variants of TBN1 have different molecular weight suggesting that different N-glycosylation domains have different length of sugar chain and influence on nuclear activity. Our data show that this expression in planta seems to be suitable for production for study of antitumor activity of these nucleases.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.