National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Decellularization and recellularization of tissues
Bavorová, Hana ; Mokrý, Jaroslav (advisor) ; Kučera, Tomáš (referee) ; Kamarád, Vojtěch (referee)
1 SUMMARY Tissue morphology and function are determined with features of extracellular matrix produced by resident cells. Extracellular matrix is composed of a complex of proteins maintaining tissue specific structure and composition. Cells and extracellular matrix are in reciprocal interaction leading to dynamic complex, contributing to homeostasis and providing specific microenvironment for stem cells. These reasons determine an extracellular matrix as a desirable structure for scaffolds utilized in tissue engineering. Extracellular matrix can be prepared by decellularization of tissues or organs by removal of all cellular components. Efficient decellularization produces three-dimensional structure with preserved architecture without harsh effect to the extracellular matrix. The combination of decellularized tissue, a scaffold, with stem cells provides a promising tool for production of new biological constructs in tissue engineering. Above mentioned aspects were main aims of this thesis with major focus on establishment of suitable decellularization protocol adequately effective for cell removal from skeletal muscle tissue. This protocol is based on combination of physical, chemical and biological methods resulting in decellularized skeletal muscle. Produced scaffolds were analysed with myriad methods...
Decellularization and Recellularization of Tissues
Hrebíková, Hana ; Mokrý, Jaroslav (advisor) ; Kučera, Tomáš (referee) ; Kamarád, Vojtěch (referee)
1 SUMMARY Tissue morphology and function are determined with features of extracellular matrix produced by resident cells. Extracellular matrix is composed of a complex of proteins maintaining tissue specific structure and composition. Cells and extracellular matrix are in reciprocal interaction leading to dynamic complex, contributing to homeostasis and providing specific microenvironment for stem cells. These reasons determine an extracellular matrix as a desirable structure for scaffolds utilized in tissue engineering. Extracellular matrix can be prepared by decellularization of tissues or organs by removal of all cellular components. Efficient decellularization produces three-dimensional structure with preserved architecture without harsh effect to the extracellular matrix. The combination of decellularized tissue, a scaffold, with stem cells provides a promising tool for production of new biological constructs in tissue engineering. Above mentioned aspects were main aims of this thesis with major focus on establishment of suitable decellularization protocol adequately effective for cell removal from skeletal muscle tissue. This protocol is based on combination of physical, chemical and biological methods resulting in decellularized skeletal muscle. Produced scaffolds were analysed with myriad methods...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.