National Repository of Grey Literature 2 records found  Search took 0.01 seconds. 
Computational and experimental analysis the state of stress of turbine blade
Damborský, Petr ; Jaroslav, Kovařík (referee) ; Malenovský, Eduard (advisor)
This diploma thesis deals with dynamic analysis of the steam turbine blade. This blade is part of the last row of low pressure level of steam turbine. Computational analysis has been performed in first part using FEM and software ANSYS. A Transient analysis has been used to solve forced vibrations. Main goal is to obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. Second part deals contain a an experiment. Experiment has been set up to perform a modal analysis which is necessary to obtain a fundamental numbers. Then the vibration of the blade has been performed. To perform this experiment same edge conditions as which has been used during the computational analysis. Goal is the same as in the first part – obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. The comparison of results obtained during experimental analysis and computational analysis has been performed in the last part of the thesis. Also the question if any geometrical nonlinearities appeared during analyses is answered.
Computational and experimental analysis the state of stress of turbine blade
Damborský, Petr ; Jaroslav, Kovařík (referee) ; Malenovský, Eduard (advisor)
This diploma thesis deals with dynamic analysis of the steam turbine blade. This blade is part of the last row of low pressure level of steam turbine. Computational analysis has been performed in first part using FEM and software ANSYS. A Transient analysis has been used to solve forced vibrations. Main goal is to obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. Second part deals contain a an experiment. Experiment has been set up to perform a modal analysis which is necessary to obtain a fundamental numbers. Then the vibration of the blade has been performed. To perform this experiment same edge conditions as which has been used during the computational analysis. Goal is the same as in the first part – obtain a behavior of main stresses and its directions as a function of loading of the blade in the crack initiation area. The comparison of results obtained during experimental analysis and computational analysis has been performed in the last part of the thesis. Also the question if any geometrical nonlinearities appeared during analyses is answered.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.