National Repository of Grey Literature 4 records found  Search took 0.01 seconds. 
The study of the influence of the composition of the lightweight fiber concrete physical and mechanical properties
Šindelek, David ; Bodnárová, Lenka (referee) ; Hela, Rudolf (advisor)
This bachelor thesis deals with a study of light construction concrete with an addition of steel fibre which monitors its impact of the physical mechanical properties. The work is divided into two parts, theoretical and practical. The theoretical part is focused on characteristics and a design of light concrete within the class 35MPa and over with the density within the class of D1,8. Furthermore, it focuses on the increase of toughness of cementitious composites with the form of application of steel fibre in different doses and lengths. In the practical part, formulas of two strength classes 35/38 D 1,8 and 45/50 D1,8 were designed with the help of the steel fibre Krampeharex in doses of 25 and30 kg/m3, and where there were both its impact of the working diagram as well as the compressive strength monitored for the duration of twenty-eight days
The use of nanotechnology for ultra-high strength concretes
Šindelek, David ; Bodnárová, Lenka (referee) ; Hela, Rudolf (advisor)
This diploma thesis deals with the concept of use of nanotechnology for cement composites and UHPC. In the theoretical part of this diploma thesis there are theoretical principles described for successful design of high performance concrete and characteristics of main feedstock and its production. Furthermore, there is a focus on nanoparticles, especially the ones with carbon base in the form of carbon nanotubes CNT, in addition to that, graphenes GN that are new on the market, moreover, graphene oxide GO and its application in cement composites to mechanical characteristics and its durability. The first part of the practical part devotes in trying to find out an optimal parameter for ultrasonic mix with a suitable surface active substance of three graphenes. The other two parts of the practical part are about influence of graphenes on mechanical characteristics, cement paste microstructure, and application in the mix of concrete C 35/45 and UHPC
The use of nanotechnology for ultra-high strength concretes
Šindelek, David ; Bodnárová, Lenka (referee) ; Hela, Rudolf (advisor)
This diploma thesis deals with the concept of use of nanotechnology for cement composites and UHPC. In the theoretical part of this diploma thesis there are theoretical principles described for successful design of high performance concrete and characteristics of main feedstock and its production. Furthermore, there is a focus on nanoparticles, especially the ones with carbon base in the form of carbon nanotubes CNT, in addition to that, graphenes GN that are new on the market, moreover, graphene oxide GO and its application in cement composites to mechanical characteristics and its durability. The first part of the practical part devotes in trying to find out an optimal parameter for ultrasonic mix with a suitable surface active substance of three graphenes. The other two parts of the practical part are about influence of graphenes on mechanical characteristics, cement paste microstructure, and application in the mix of concrete C 35/45 and UHPC
The study of the influence of the composition of the lightweight fiber concrete physical and mechanical properties
Šindelek, David ; Bodnárová, Lenka (referee) ; Hela, Rudolf (advisor)
This bachelor thesis deals with a study of light construction concrete with an addition of steel fibre which monitors its impact of the physical mechanical properties. The work is divided into two parts, theoretical and practical. The theoretical part is focused on characteristics and a design of light concrete within the class 35MPa and over with the density within the class of D1,8. Furthermore, it focuses on the increase of toughness of cementitious composites with the form of application of steel fibre in different doses and lengths. In the practical part, formulas of two strength classes 35/38 D 1,8 and 45/50 D1,8 were designed with the help of the steel fibre Krampeharex in doses of 25 and30 kg/m3, and where there were both its impact of the working diagram as well as the compressive strength monitored for the duration of twenty-eight days

Interested in being notified about new results for this query?
Subscribe to the RSS feed.