National Repository of Grey Literature 1 records found  Search took 0.01 seconds. 

Warning: Requested record does not seem to exist.
Magnetic nanoparticles with antibacterial properties: Synthesis, characterization and biological applications
Shatan, Anastasiia-Bohdana ; Horák, Daniel (advisor) ; Kaman, Ondřej (referee) ; Matějíček, Pavel (referee)
In response to the escalating global threat of antibiotic resistance, innovative strategies are imperative. This thesis focuses on surface-engineered magnetic nanoparticles (MNPs) with potent antibacterial properties, aiming to combat antibiotic resistance effectively. Specifically, uniform 16-nm Fe3O4 nanoparticles were synthesized via oleic acid-stabilized thermal decomposition of Fe(III) oleate in a high-boiling organic solvent. Optionally, 8-nm γ-Fe2O3 particles were obtained by coprecipitation of Fe2+ and Fe3+ salts in a basic medium. For the application of antibacterial MNPs in biological media, water-dispersible nanoparticles were required. Hence, original magnetic particles containing hydrophobic oleic acid (OA) coating were modified with silica using a water-in-oil reverse microemulsion. Subsequent modification with (3-mercaptopropyl)trimethoxysilane and decoration with silver nanoclusters yielded Fe3O4@SiO2-Ag nanoparticles. Additionally, neat Fe3O4 particles were coated with Sipomer PAM-200 containing both phosphate and methacrylic groups, facilitating attachment to the iron oxide and enabling (co)polymerization with 2-(dimethylamino)ethyl methacrylate and/or 2- tert-butylaminoethyl methacrylate. Furthermore, γ-Fe2O3 nanoparticles were rendered antimicrobial through modification with...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.