National Repository of Grey Literature 1 records found  Search took 0.00 seconds. 

Warning: Requested record does not seem to exist.
Excitation wavelength-dependent Raman spectra of single-layer graphene-phtalocyanine hybrid systems
Uhlířová, Tereza ; Vlčková, Blanka (advisor) ; Němec, Ivan (referee)
A systematic chemical and spectroscopic approach to evaluation of the effect of single-layer graphene (SLG) on Raman spectra of free-base phthalocyanine (H2Pc) in glass/SLG/H2Pc hybrid systems has been developed. By a combi- nation of electronic absorption spectra, Raman spectra at five excitation wave- lengths (532, 633, 647, 785 and 830 nm) and excitation profiles of H2Pc Raman spectral bands, the constitution of the three prepared hybrid sysems has been es- tablished in the following manner: Hybrid system I comprises probably a bilayer of H2Pc molecules, system VI approximately a monolayer of H2Pc, and system X a slightly reorganized monolayer of H2Pc molecules. Micro-Raman spectral map- ping of all three hybrid systems yielded H2Pc spectral bands (together with the SLG spectral bands) at all five excitation wavelengths. By contrast, for all three HOPG/H2Pc reference systems (HOPG = highly oriented pyrolytic graphite), prepared by the same procedure as the corresponding samples, H2Pc signal was detected only at 633 and 647 nm excitations. A selective increase of normalized Raman intensities of H2Pc spectral bands for the glass/SLG/H2Pc monolayer hybrid systems at 830 nm was revealed on the basis of a mutual comparison of Raman excitation profiles of all three samples of glass/SLG/H2Pc hybrid systems....

Interested in being notified about new results for this query?
Subscribe to the RSS feed.