National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Advanced high-temperature resistant metal-ceramic composites based on TiB2 for cutting tools
Halmazňa, Jiří ; Drdlík, Daniel (referee) ; Chlup, Zdeněk (advisor)
This diploma thesis deals with the preparation of new high-temperature resistant cermets based on TiB2. The hard ceramic phase is bonded by NiW metallic alloy, which was prepared by mechanical alloying using a planetary ball mill. The first part of the thesis is targeted to the optimization of mixing of both powders in the planetary ball mill. The procedure of preparation of powders mixture with homogenous particles distribution of the NiW alloy was designed and verified with simultaneous particle size refinement. The second part is focused on the microstructure characterisation and mechanical properties evaluation of sintered materials. In this case both powders, TiB2 and NiW, were mixed in a tubular mill and consequently compacted by a rapid hot pressing method at four different sintering temperatures. The influence of the sintering temperature on the microstructure development characterized by the density, porosity and grain size was monitored. The elastic modulus, fracture toughness, flexural strength and hardness were measured on prepared test specimens. The results of conducted experiments show a significant dependence of the microstructure and mechanical properties on applied sintering temperatures. The higher sintering temperatures are used the better mechanical properties are observed. However, the sintering temperature of 1375°C seems to be an optimal one. The sintering temperature of 1400°C leads to the significant losses of the metal phase due to sublimation of nickel resulting in increased porosity in the metal phase regions.
Advanced high-temperature resistant metal-ceramic composites based on TiB2 for cutting tools
Halmazňa, Jiří ; Drdlík, Daniel (referee) ; Chlup, Zdeněk (advisor)
This diploma thesis deals with the preparation of new high-temperature resistant cermets based on TiB2. The hard ceramic phase is bonded by NiW metallic alloy, which was prepared by mechanical alloying using a planetary ball mill. The first part of the thesis is targeted to the optimization of mixing of both powders in the planetary ball mill. The procedure of preparation of powders mixture with homogenous particles distribution of the NiW alloy was designed and verified with simultaneous particle size refinement. The second part is focused on the microstructure characterisation and mechanical properties evaluation of sintered materials. In this case both powders, TiB2 and NiW, were mixed in a tubular mill and consequently compacted by a rapid hot pressing method at four different sintering temperatures. The influence of the sintering temperature on the microstructure development characterized by the density, porosity and grain size was monitored. The elastic modulus, fracture toughness, flexural strength and hardness were measured on prepared test specimens. The results of conducted experiments show a significant dependence of the microstructure and mechanical properties on applied sintering temperatures. The higher sintering temperatures are used the better mechanical properties are observed. However, the sintering temperature of 1375°C seems to be an optimal one. The sintering temperature of 1400°C leads to the significant losses of the metal phase due to sublimation of nickel resulting in increased porosity in the metal phase regions.
Microstructure and hardness of TiB2
Halasová, Martina ; Bača, L. ; Šajgalík, P. ; Chlup, Zdeněk ; Dlouhý, Ivo
MICROSTRUCTURE AND HARDNESS OF TIB2 TiB2 in its pure form is extremely hard material with high melting point. This behaviour predetermines it to be used as e.g. nozzles, armour or wear parts. It is also very brittle and the effort is to decrease brittleness trough addition of various dopants. This contribution deals with the TiB2 dopped with Ta and Ni in various ratio. For observing the microstructure was used SEM and Vickers hardness was calculated by measuring the diagonals of indents. For comparison the values obtained by machine were shown in graph, too.

Interested in being notified about new results for this query?
Subscribe to the RSS feed.