National Repository of Grey Literature 2 records found  Search took 0.00 seconds. 
Mechanism of auxin transport across plasma membrane through PIN auxin efflux carriers
Lefnar, Radek ; Petrášek, Jan (advisor) ; Nodzynski, Tomasz (referee)
Phytohormone auxin and its directional distribution plays an essential role in the regulation of numerous processes during vegetative and reproductive plant development. Regulation of the expression, localization and activity of the PIN-FORMED (PIN) proteins is important for proper polar auxin transport in plant tissues. PIN proteins have been described as the major auxin efflux carriers regulating auxin's directional flow to build up gradients that provide information for the coordination of plant development. PIN protein structure topology prediction through bioinformatic analysis is still insufficient to understand their transport mechanism. Experimental analysis of PIN protein domains can provide valuable insight into understanding their role in mediating auxin transport. In this study, the C-terminal part of PINs have been modified by gradual trimming to determine the existence of relevant functional domains, which could be important for auxin transport. Seven modified PIN proteins from Arabidopsis thaliana and Nicotiana tabacum were prepared. Transiently transformed tobacco cell line Bright Yellow-2 (BY-2) was used to monitor differences in PIN transport activity. This approach allowed indirect monitoring of intracellular auxin levels using the DR5 reporter system. Transiently expressed...
The role of actin dynamics in auxin transport
Stillerová, Lenka ; Cvrčková, Fatima (advisor) ; Schwarzerová, Kateřina (referee)
Phytohormones are signalling molecules directing physiological and developmental processes in plants. One of them, auxin, is involved in the diverse regulation of plant processes, e.g. embryogenesis, organogenesis, vascular tissue formation and tropisms. Auxin transport is polar. Auxin isdistributed via the phloem, utilizing specialized membrane transport proteins; small amount diffuse also through the membrane. Aux1/Lax transporters mediate auxin entry into the cell, auxin efflux is mediate mostly by PIN transporters, which are the crucial factors in determining the directionality of auxin flow. Asymmetric localization of membrane PIN proteins depends on vesicle transport from Golgi to the plasma membrane. Vesicles are transported along actin filaments which are dynamically rebuilted by regulators. They are maintaining asymmetric cellular localization of the auxin transport proteins. PIN proteins are cycling between endosomes and plasma membrane. Cycling is regulated by ARF-GEF proteins and serin/threonin kinase (PID, PINOID). Newly synthesized PIN proteins are equally distributed in the plasma membrane, afterwards they are asymmetrically redistributed. Regulation of actin filaments formation and remodelling is the crucial factor for transport of vesicles with PIN proteins. Many proteins which regulate...

Interested in being notified about new results for this query?
Subscribe to the RSS feed.