National Repository of Grey Literature 3 records found  Search took 0.01 seconds. 
Lie groups and their physical applications
Kunz, Daniel ; Kureš, Miroslav (referee) ; Tomáš, Jiří (advisor)
In this thesis I describe construction of Lie group and Lie algebra and its following usage for physical problems. To be able to construct Lie groups and Lie algebras we need define basic terms such as topological manifold, tensor algebra and differential geometry. First part of my thesis is aimed on this topic. In second part I am dealing with construction of Lie groups and algebras. Furthermore, I am showing different properties of given structures. Next I am trying to show, that there exists some connection among Lie groups and Lie algebras. In last part of this thesis is used just for showing how this apparat can be used on physical problems. Best known usage is to find physical symmetries to establish conservation laws, all thanks to famous Noether theorem.
Lie groups and their physical applications
Kunz, Daniel ; Kureš, Miroslav (referee) ; Tomáš, Jiří (advisor)
In this thesis I describe construction of Lie group and Lie algebra and its following usage for physical problems. To be able to construct Lie groups and Lie algebras we need define basic terms such as topological manifold, tensor algebra and differential geometry. First part of my thesis is aimed on this topic. In second part I am dealing with construction of Lie groups and algebras. Furthermore, I am showing different properties of given structures. Next I am trying to show, that there exists some connection among Lie groups and Lie algebras. In last part of this thesis is used just for showing how this apparat can be used on physical problems. Best known usage is to find physical symmetries to establish conservation laws, all thanks to famous Noether theorem.
Annihilation and creation operators in Lie algebra theory and physics
Jarkovská, Kateřina ; Šmíd, Dalibor (advisor) ; Křižka, Libor (referee)
We show the use of the theory of Lie algebras, especially their oscillator realizations, in the context of quantum mechanics. One can construct oscillator realizations from matrix realizations. In the case of symplectic and special orthogonal algebra, we demonstrate an alternative method of obtaining oscillator realizations from symmetric or exterior power of a vector space of annihilation and creation bosonic or fermionic operators. We find Lie algebra of polynomials of degree at most two in phase space of a mechanical system, which form the semi-direct product of the Heisenberg algebra and symplectic algebra. It is shown that a classical system with Hamiltonian function in this algebra can be quantized by two equivalent representations - Schrödinger or Bargmann-Fock representation. The second mentioned representation generates the same operators of symplectic algebra as we got from their previous formal construction from symmetric power of a vector space of bosonic operators. Quantization is demonstrated on the bosonic harmonic oscillator. We use the similarities between bosonic and fermionic oscillator realizations to define the fermionic harmonic oscillator. Some properties of spinor representations of special orthogonal algebra are illustrated on its state space. Powered by TCPDF (www.tcpdf.org)

Interested in being notified about new results for this query?
Subscribe to the RSS feed.