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Robnik-Šikonja, M.
2012
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Tržaška 25, 1001 Ljubljana, Slovenia

Marko.Robnik@fri.uni-lj.si

2 Institute of Computer Science,

Academy of Sciences of Czech Republic

Pod Vodarenskou Vezi 2, 182 07 Praha 8, Czech Republik

savicky@cs.cas.cz

Abstract

The classification with imbalanced class proportions is a particu-
larly difficult problem. We investigate the classification of imbalanced
data sets with random forests method, which is one of the state-of-the-
art classifiers. To this aim we created a semi-artificial data generation
engine which for a supplied real world data set estimates its joint prob-
ability distribution with an RBF network and generates new data from
this distribution at any proportion of imbalance required. This engine
allowed us to systematically and consistently vary level of imbalance
for approximations of several real world data sets and to study the pa-
rameters of the learning algorithms which influence the classification
performance. The results show that consistently across different data
sets and imbalance levels, there are notable trends in settings of the
stopping criterion and the level of smoothing for an improved perfor-
mance. These findings are confirmed on large UCI data sets, where
imbalance can be observed naturally without modeling.

1 Introduction

A two-class data set for classification is called imbalanced, if most of
the cases belong to one of the classes, called the majority class, and only
a small fraction of cases belongs to the other class, called the minority
class. It is well-known that learning a classification tree or an ensemble
of trees with an imbalanced training set is not effective. Different over
and under sampling strategies are used in order to balance the training

1



set and thus improve the quality of the obtained model, see [2] and
the references therein. A more recent study of classification trees for
imbalanced data is [3].

In this paper, we investigate the setting of parameters of random
forest classifier, which influence its performance on imbalanced data as
well as the balancing techniques. A proper setting of these parameters
can be combined with the sampling strategies to provide an efficient
learning algorithm. The investigated parameters include the stopping
criterion and the level of smoothing. A more detailed description of
the parameters is in Section 3.

1.1 Related work

In order to asses the interaction of the investigated parameters with
the imbalance of the training data, we construct classifiers for different
class counts for training. The list of the pairs of class counts used
is presented in Section 2.3. Using the default setting of the stopping
criterion and without smoothing, the quality of the obtained classifier
deteriorates with increasing imbalance. It appears, however, that the
effect of large imbalance may be compensated by an appropriate setting
of the stopping criterion and smoothing. These results are presented
in Section 4.

2 Data sets

The main scientific instrument of empirical research in machine learn-
ing and data mining is the availability of appropriate data sets. For
our study, where realistic data sets with large imbalances are rare, it
is particularly important to assure the experiments will be relevant to
the practitioners. To this aim we used two types of data sets. The first
choice are the actual publicly available highly imbalanced data sets.
Unfortunately not many of them exist, so we created a data genera-
tion engine which creates semi-artificial data with many characteristics
of real world data sets but also the ability to select level of class im-
balance. In this section we describe both types of data sets we used in
our study.

2.1 Large UCI data sets

We use the five data sets from [4], whose abbreviations and full names
are as follows.

abbreviation full name
MiniBooNE MiniBooNE particle identification
RecordLinkage Record Linkage Comparison Patterns
census-income Census-Income (KDD)
census1990 US Census Data (1990)
covtype Covertype

The used data sets have the following numbers of attributes.
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name attributes
MiniBooNE 50
RecordLinkage 11
census-income 42
census1990 67
covtype 54

The class counts for the data sets and the way, how each class was used
is specified in the next table. Some of the data sets are not imbalanced.
We used stronger subsampling of one of the classes in order to make it
the minority class.

data set class count usage
MiniBooNE background 93565 majority

signal 36499 minority
RecordLinkage FALSE 5728201 majority

TRUE 20931 minority
census-income 50000+. 18568 minority

- 50000. 280717 majority
census1990 0 2168997 majority

1 236403 minority
2 52885 minority

covtype 1 211840 minority
2 283301 majority
3 35754
4 2747
5 9493
6 17367
7 20510

2.2 Semiartificial data sets

In order to obtain generators for arbitrarily large data sets, which are
similar to some of the standard benchmark data sets, say D1, we use the
following strategy. The original two-class data set D1 is approximated
using PRBF model [8, 9], which is a mixture of gaussians. The PRBF
model is used to generate new data D2 of the same size. Then, each
of the data sets D1, D2, resp. is used to construct a random forest
classifier. The error of the classifier trained on D1 is measured on
D2 as a test set on each class separately. Similarly, the error of the
classifier trained on D2 is measured on D1. If all the four obtained
errors are at most 0.15, the PRBF model is considered an adequate
approximation for our experiments.

The following table summarizes the names of the standard data
sets used for PRBF approximation and their origin. The data sets
were obtained from [4], [1] and [5] repositories and mostly the data
sets used also in [3].
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name repository
pima UCI
page UCI
segment UCI
letter UCI
pendigits UCI
german numeric UCI
breast wdbc UCI
satimage UCI
fourclass LIBSVM
svmguide1 LIBSVM
splice LIBSVM
phoneme ELENA

For each data set, the list of all classes as they appear in the file is
presented in the next table together with the choice of the minority and
the majority class. This choice was obtained by considering all pairs
among the first at most seven classes and the hardest combination was
used. In some cases, this leads to a reversed assignment of the minority
and majority class than in the real problem.

name classes minority majority
pima 0, 1 0 1
page 1, 2, 3, 4, 5 5 1
segment 1, 2, 3, 4, 5, 6, 7 5 3
letter A, B, C, D, E, F, G, ... G C
pendigits 0, 1, 2, 3, 4, 5, 6, ... 3 4
german numeric 1, 2 1 2
breast wdbc B, M M B
satimage 1, 2, 3, 4, 5, 7 3 7
fourclass -1, +1 -1 +1
svmguide1 0, 1 0 1
splice -1, +1 +1 -1
phoneme 0, 1 0 1

2.3 Sampling strategy

The training data sets for our experiments with large UCI data were
obtained by subsampling of the original data set. For the semiartificial
data, we generate a new independent sample for each run. The class
counts for the training sets were chosen from the following table. Note
that in the abbreviations dxy, the x and y are exponents of the number
of cases in minority and majority class, respectively, e.g., d23 stand for
102 = 100 minority class instances and 103 = 1000 majority class
instances.

The original UCI data sets were mostly quite easy for random forest
classifier, with AUC close to 1. In order to make the problems harder,
we used a random subset of the attributes. The number of selected
attributes was chosen empirically so that the typical AUC is between
0.7 and 0.9.
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Table 1: The abbreviations for class counts used in our study. In the ab-
breviations dxy, the variables x and y are exponents of number of cases in
minority and majority class.

abbreviation minority majority
d22 100 100
d23 100 1000
d24 100 10000
d25 100 100000
d33 1000 1000
d34 1000 10000
d35 1000 100000

3 Investigated parameters of random for-

est

For our experiments, we use CORElearn [7] extension package to R
Environment for Statistical Computing [6].

We consider stopping criterion defined by limiting the number of
cases in any node of each tree of the forest from below by a parameter
W . This criterion is implemented by “minNodeWeight” option of the
function CoreModel(). See “help(helpCore)” for more detail.

We used m-estimate smoothing where m is determined, so that
S = m · pc, where S is a smoothing parametr and pc is the prior
probability of the least probable class, see [10]. This is implemented
in the predict method for CoreModel objects (predict.CoreModel())
using option “smoothingType=4”. The level of smoothing S is then
specified by the option “smoothingValue”.

The evaluation measures information gain and its uniform variant
were used. In the function CoreModel(), they are set using the option
selectionEstimator with values “UniformInf” or “InfGain”.

4 Results

4.1 Results for the default and the best settings

In this section, we compare the classifiers, which are obtained using
different class counts and two types of the setting of the stopping cri-
terion W (minNodeWeight) and S (smoothing parameter). By the
default setting, we mean W = 1 and S = 0, which represents stopping
at leaves of size 1 and no smoothing. By the best setting, we mean the
setting obtained as follows. All combinations of W = minNodeWeight

and the smoothing parameter S from

W ∈ {1, 2, 5, 10, 20, 50, 100, 200, 500, 1000, 2000, 5000} (1)

and
S ∈ {0, 0.1, 0.31623, 1, 3.1623, 10, 31.623, 100} . (2)
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are used to construct a classifier and the setting, which yields the best
AUC among them is determined.

4.1.1 Large UCI data sets

In this section, we compare AUC obtained for different training counts
and different settings of the parameters W and S. The next two tables
present the comparisons for the default setting W = 1 and S = 0.

comparison of d22 and d25 > = <

RecordLinkage 10 0 0
census-income 10 0 0
census1990 6 2 2
covtype 10 0 0
total 36 2 2

comparison of d33 and d35 > = <

RecordLinkage 9 0 1
census-income 10 0 0
census1990 5 3 2
covtype 2 0 8
total 26 3 11

The tables demonstrate that with the default setting, training with
class counts (102, 102) yields typically a better AUC than class counts
(102, 105) despite that with the latter class counts, the training set
contains more information. The large imbalance in the latter class
counts does not allow to take advantage of more cases of the majority
class. Similarly, the class counts (103, 103) mostly yield better AUC
than the class counts (103, 105) except for the data set covtype.

The next two tables demonstrate that the disadvantage of large
imbalance may be compensated to a large extent by an appropriate
setting of the stopping criterion and smoothing. For each choice of the
training class counts, the best setting of W and S among the values (1)
and (2) as described at the beginning of Section 4.1 was determined
and the corresponding AUC was used for comparisons.

comparison of d22 and d25 > = <

RecordLinkage 7 0 3
census-income 4 0 6
census1990 1 4 5
covtype 0 0 10
total 12 4 24

comparison of d33 and d35 > = <

RecordLinkage 3 0 7
census-income 5 0 5
census1990 2 4 4
covtype 0 0 10
total 10 4 26
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For the best setting of the parameters, training class counts (102, 105)
provide mostly better AUC than class counts (102, 102). Similarly
the class counts (103, 105) yield mostly better AUC than class counts
(103, 103).

4.1.2 Semiartificial data sets

The comparison of AUC obtained for random forests trained with d22
and d25 and with d33 and d35 demonstrates a similar dependency on
the setting of the parameters W and S as the one observed for large
UCI data. The results of the comparison of AUC for d22 and d25 and
for d33 and d35 for semiartificial data is summarized in the following
tables.

comparison of d22 and d25 > = <

default setting 11 0 1
best setting 0 0 12

comparison of d33 and d35 > = <

default setting 8 0 4
best setting 0 0 12

For the default setting, the result for balanced training is clearly better
than for imbalanced training. For the best setting of the parameters,
we get the opposite.

4.2 The influence of stopping criterion and smooth-

ing

Examples of the maps of the dependence of AUC on W and S param-
eters.

4.3 The influence of imbalance

The plots presented in the previous section suggest that the default
setting W = 1 and smoothing with S = 0 is outperformed by settings
with higher W or S. In this section, we present statistics, which con-
firm this hypothesis. Besides of the default setting, for each training
sample, a random forest was grown for each combination of the param-
eters W = 1, 2, 5, 10 and S = 0, 0.1, 0.31623, 1, which satisfies W ≥ 5
or S ≥ 0.31623. The AUC for the 12 combinations obtained in this
way and AUC for the default setting are sorted in a decreasing order
and the ranks are assigned to them. Since the order is decreasing,
the largest AUC gets rank one. The rank of the result for the default
setting is then tabulated.

4.3.1 Large UCI data sets

For large UCI data, the comparison was performed separately for each
data set, for each of the 10 random subsets of attributes and for each

7



RecordLinkage−2, d22

W

S

F0

F1

F2

F3

F4

F5

F6

F7

1 2 5 10 20 50 100 200 500 100020005000

0.970

0.975

0.980

0.985

0.990

RecordLinkage−2, d23

W

S

F0

F1

F2

F3

F4

F5

F6

F7

1 2 5 10 20 50 100 200 500 100020005000

0.970

0.975

0.980

0.985

RecordLinkage−2, d24

W

S

F0

F1

F2

F3

F4

F5

F6

F7

1 2 5 10 20 50 100 200 500 100020005000

0.970

0.975

0.980

0.985

0.990

RecordLinkage−2, d25

W

S

F0

F1

F2

F3

F4

F5

F6

F7

1 2 5 10 20 50 100 200 500 100020005000

0.970

0.975

0.980

0.985

0.990

Figure 1: Levelplots of AUC for 100 training cases of the minority class.

combination of training counts. The 10 ranks of the default setting
computed for different column subsets of a given data set and given
training counts are averaged. The rows of the tables correspond to
data sets and columns to the training counts.

Average ranks of AUC obtained for the default setting among the
results obtained for other tested settings of the parameters for different
data sets and training counts.

d22 d23 d24 d25
MiniBooNE 9.20 12.3 13.0 –
RecordLinkage 10.30 12.2 12.8 12.75
census-income 11.80 13.0 13.0 13.00
census1990 8.75 10.4 10.6 10.60
covtype 9.00 11.5 13.0 13.00
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Figure 2: Levelplots of AUC for 1000 training cases of the minority class.

d33 d34 d35
MiniBooNE 12.0 13.0 –
RecordLinkage 11.9 13.0 11.85
census-income 13.0 13.0 13.00
census1990 10.4 10.6 10.60
covtype 5.7 6.3 11.10

The rank of AUC obtained for the default settings is typically a
large one and often even the largest, which is 13 and corresponds to
the worst result.

4.3.2 Semiartificial data sets

The following table presents the average ranks of the AUC obtained
with the default setting among the other tested setting for the samples
of semiartificial data and different training counts. Larger rank means
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a worse result.

d22 d23 d24 d25
5.75 7.25 12.25 13.0

d33 d34 d35
4.08 6.92 12.58

Similarly as for large UCI data, the rank of the result for the default
setting increases with increasing imbalance.

4.3.3 Summary of the influence of imbalance

It may be seen that for most of the large tested UCI data sets and
also for the tested samples of semiartificial data, the average rank of
AUC for the best setting is increasing with increasing imbalance in
the sequences of the counts (d22, d23, d24, d25) and (d33, d34, d35).
Since larger rank means a worse result, this is a further evidence that
with increasing imbalance, it becomes more important to set either the
stopping criterion W or smoothing parameter S or both to a higher
value than the default one.

5 Conclusion

We analysed the quality of the prediction for random forest trained
on imbalanced data and the influence of the setting of the parameters
for random forest. The stopping criterion and the level of smoothing
proved to be important for minimizing the generalization error. These
parameters may be used together with subsampling of the majority
class to achieve a good classifier.
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