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Abstract

The paper deals with reliability of measurements in the context of multiple-item testing instruments,
such as educational tests. We concentrate on popular characteristic widely used for estimation of relia-
bility called Cronbach’s alphawhich is suited for normally distributed error term. Further we discuss
modifications of Cronbach’s alpha for the case of dichotomous (true-false) scoring.

1. Reliability

When describing the reliability of measurement, it is usually assumed that the measureismeomposed
out of two random variables: an unobservable true vdlwand an error terma,

Y=T+e.

The error term is supposed to have a zero mB&) = 0, a positive variance, and to be independent from
the true valudl'. Therefore:
var(Y') = var(T) + var(e).

Thereliability of such measurement is defined by:

_var(T)
~var(Y)

var(e)

=1- var(Y)

1)

and it compares variability of the error term with the variability of measured property. The smaller the
error variance relative to the observed score variance, the more reliable is the measurement. Thus, the
measurement is considered to be reliable when the value of reliability is close to 1.

Here, we should point out that reliability is sample-dependent. Therefore a certain test can have a different
reliability when given to a population with a high variability of tested knowledge than when given to a
population with a low variability of the knowledge.

The following simple lemmas give us a natural interpretation of the reliability.

Lemma 1.1 Having two independent measuremeYits= 1" + e;, Yo = T + ey of the same property,
where var(e;) = var(ez), the reliability can be expressed as the correlation between these two measure-
ments,R = corr (Y7, Y2).

Proof:
cov(T' +e1, T +ep) cov(T,T)4+0  var(T)
var2(Y) var(Y') var(Y)

corr(T'+e1,T + e2) = = R. O
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In terms of educational tests, the reliability reflects to tvbeent it gives the same result when taken
repeatedly by the same person under the same conditions.

Lemma 1.2 The reliability can be expressed as the squared value of the correlation between the observed
score and the true score, cotY, 7).

Proof:
2 _cov(T+eT)  varX(T) _ var(T)
corr™(Y, T) = var(Y)var(T) — var(Y)var(T) — var(Y)

O

Thus, the reliability of an educational test measures the strength of the relationship between the score
reached by a student and his/her true knowledge.

Unfortunately, none of these representations is useful when estimating the reliability of educational tests
because they cannot be directly estimated from the observed data. We cannot estimate the error variance
var(e), the true scord’, nor the knowledge of a student by the same test twice and independently. Therefore,
when estimating the reliability of an educational test, we mostly take into account a fact that such a test is
a composite measurement.

2. Reliability of composite measurement

We consider the problem of measuring the reliability of multiple-item testing instrument, such as in ed-
ucational test. Consider a series of iteiis= T, + e;, for j = 1,...,m, where the error terms;

are mutually independent and independent on the true sdarder £k = 1,...,m, having the same
variance vate;) = o2, and mean E; = 0. The observed overall score of the items is given by

Y =Y1,+---+Y,, and the unobservable overall true score is giveff'by 11, + - - - + T}, The reliability

of such a composite measurement is defined’by (1) and with regard to the above mentioned assumptions
can further be expressed as:

_var(T) var(T) B var(T)

B = var(Y) var(T)+var(> e;) var(T)+mo2’

(2)

The next lemma gives a relationship between reliability of a composite measurement and reliability of an
item in one special case:

Lemma 2.1 If for the items’ true score the following holds simultaneously:

var(Ty) = --- = var(Ty,) = 0%

corr (T, Ty) = 1, L k=1,...,m,

then all the reliabilitiesR, of the items are equal and the reliability of the whole test can be expressed in
Spearman-Brown formula

le
Rpy=—— 3
1+ (m — 1)R1 ( )
Proof:
var ZT]- = Zvar(Tj) + ZZCOV(Tj,Tk) =
j=1 j=1 i#k
= mo2 +m(m—1)o% = m?c?,
var [ Y V| = var (> T | +var | > e; | =mPof +mol.
j=1 j=1 j=1
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Therefore
var (Z;.”:l Tj) m2o2 mg%"ig
Ry = T 252 2 o2
var (Z;"Zl Y]) miop +mog 14 (m — 1)0%—+Tg3
o le
1+ (m—-1DRy

O

Related to this lemma is a fact, that reliability of an educational test is dependent on the number of its
items. Therefore, by adding suitable items to the test, the reliability could approach as cloas e

would desire. When comparing reliabilities of two educational tests, which in principle can’t have the same
number of items, we should bear this property of reliability in mind.

3. Cronbach’s Alpha

As a measure of reliability in classical test theory, Cronbath [2] proposed the coefficient alpha. This char-
acteristic estimates the consistency between items in a test and it is defined as:
L m var) oSy m S5m0 "
CR T 1 var(Y) m—133" 10k,

whereo;, is the covariance of the pat’;, Y ). Novick and Lewis|[8] has shown that Cronbach’s alpha is
always a lower bound of the reliability
acrR <R

and is equal to reliability only if the conditions of Lemma 2.1 are fulfilled.

A very pleasant property of Cronbach’s alpha is the fact that this characteristic is easy to estimate from
the data simply by using sample variances and sample covariances instead of their population counterparts
in @). This sample estimate can further be rewritten (for proofiSee [4]) in terms of the two-way ANOVA
as:
MSJTWSMSE - FL ©®)

T T
where M St and M Sg are the mean sums of squares ahid is statistics widely used for testing the
hypothesis vafT") = 0 when normality of variables can be assumed.

QCR =

Notation [®) gives important properties of our estimate:

e ¢ can take values betweernc and 1, although only positive values make sense for reliability.

e The greater the estimate of reliability is, the better the educational test can distinguish between the
students. This points out the fact, that Cronbach’s alpha was designed as a coefficient of internal
consistency.

e The estimate equals one, if and only if there exist constants, i = 1,...,n,j =1,...,m, so that
the score reached by thidh student in thg-th item can be written as; + b;. This means that in this
case, to get all the information about students, one item would be enough. Therefore, when getting
too high an estimate of Cronbach’s alpha, one should actually think of lowering the number of items.

4. Cronbach’s alpha for dichotomous items

In fact, Cronbach’s alpha was designed as a generalization of the so called Kuder-Richardson formula 20
for dichotomous scoring, already proposed in 19371in [6]:

m 52*2?:1215(1*%)7 )

d:
m—1 s
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wherep; is a relative frequency of correct answers to iftle item ands? is a sample estimate of the
variance of total scores. One can easily see fllat (6) can be obtained when computing the sample estimate
of Cronbach’s alphdJ4) in the case of dichotomous scoring, vleé@e: p; is the proportion of correct
answers to thgth question andar(Y;) = p;(1 — p;).

Nevertheless, with dichotomous items, the assumptions of analysis of variance are violated. The scores
cannot be assumed to have normal distribution, and moreover, the variance is dependent on the mean value.
Therefore it is a matter of question to what extent is this estimate appropriate at all.

4.1. Proposed modifications of Cronbach’s alpha estimate

Formula [b) led zZvaral]5] to the idea of modifying Cronbach’s alpha for the case of binary outcomes
by replacingFr by statistics used for testing the hypotheBis : var(7') = 0 in logistic regression.
This is equal to testing the submodel B where the sd¢yedepends only on the test item (and doesn’t
depend on the student’s ability) against the model A+B where the 3¢pmepends on the student and
on the test item. Appropriate statistics is the difference of deviance in the submodel and in the model
X? = D(B) — D(A + B), which has under the null hypothesis th&rn — 1) distribution. Therefore, the
proposed estimate is:

n—1

X ")

In this work we are trying to justify the estimafg (7), so far calledltugstic estimate of Cronbach’s alpha
or shortlylogistic alphg and to demonstrate its qualities by simulations.

Qlog =1 —

5. Extended beta-binomial model

The model used most often for describing items with dichotomous scoring is the logit-normal model called
Rasch model]7],.18]. In this model the probability of a correct response of pérsoitem; is given by:

explyii(m + 0,
P(Yi; = yiji mi, 0;) = explyi; (mi + 9;)]

- 8
1+ exp(m +6;)’ (8)

wherer; describes the level of ability of persérandd; is an unknown parameter describing the difficulty
of item .

Evaluating the true reliability of a composite measurement of items which obey Rasch model with certain
parametersr;,i = 1,...,n, andd;,j = 1,...,m is a difficult task. That is why for simulations we
propose thextended beta-binomial mogethere calculating the true reliability is tractable (S8e (9)). The
motivation of this model is following:

An often used model in reliability studies of binary data (see for examplel[9], [10]) ibekeebinomial

model In this model we assume, that the probability of suceessaries over subjects = 1,...,n
according to a beta distribution with parametendb, and, conditional to this probability, the total score

Y; of theith person is binomially distributed. Choice of beta distributiondgis logical since it is a flexible
distribution and leads to mathematically tractable results. A pleasant property of the beta-binomial model
is the fact, that the first two moments for the total score are easy to compute:

a

a+b

E(Y)=nu=n

var(Y) = nu(l —p) |14 (n — 1)% )

wherey is the marginal probability of success for any individuak= #b and % = p is the intraclass

correlation cor(Y;;, Y;x)(j # ) common for any subject and any pair of responses.
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An unpleasant property of this model for our situation is thet that it does not allow for different diffi-
culties of items. Hand in hand with this goes the common-correlation structure which is impossible in our
case.

When trying to extend for different difficulties of items and yet preserve the structure of the beta-binomial
model, we can think of the following model: We assume again, that the probability of succeases

over subjects = 1, ..., n according to a beta distribution with parametersndb. We qualify the impact

of the difficulty of thejth item by a small numbe¥;, assuming thaE;.”:1 d; = 0. When parameters, b

are large enough, there is a slight danger that the sumsd; get outside the intervdD, 1). Therefore,

Y, ..., Y, are for a givenr; independent random variables with alternative distributiopralt ¢;). The

total score¥’; are sums of such random variables.

5.1. Properties ofY;; in the extended beta-binomial model

For conditional mean and variance, it holds
E(Yilmi) = E(Y3m) = P(Yy = 1m) = m + 6,
var(Yy;|mi) = E(Y3|mi) — (E(Yij|mi))? = (mi + 6;)(1 — (mi + 6)).
Therefore the unconditional mean is

E(Yi;) = EE(Yjj|m) = +0; =p+9;

a
a+b
where we assigned = a/(a+b) for the mean value of the beta distribution. For the unconditional variance
it holds:

var(Y;;) = var(E(Yi;|m;)) + E(var(Yi;|m))
= var(m; + 6;) + E((m + 6;)(1 — (m +65)))

ab 1 1 w1 .
T @+ b2atb+1) +/0 (”+5j>(1*(7f+5j))m7f (1—m)" 'dm
— ab N a(a+1) - - a 2
7(a+b)2(a+b+1)+(ﬂ+5j> (a+b)(a+b+1) 2055 %

= p(l = p) +0;(1 = 2p — 55).

0

Because = 15 = ﬁ, the covariance of variablés;, Y;; for j # ¢ equals
cov(Yi;, Yir) = cov(E(Yij|m), E(Yie|mi))
= cov(m; + §;,m + &) = var(m;)
ab
= = 1 - 3
(RS s
Let’s define
1—2p—4;
Ci=14+0—-"—2
’ 7ol - p)

Then the correlation between; andY;, for j # t is

cov(Yy;,Yi) 1

corr(Y;;,Yis) = = .
(i, Yar) Vvary;vary;, p\/Cth

For constant difficulties of item§; = 0 we get the common correlation structure, qéfy;, Y;:) = p. For
unequal difficulties of items it is natural to assume- b (to assume symmetric distribution of knowledge),
thereforey = 1/2. Inthis case”; =1 — 4632-, thus the impact of < 1 is small.
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5.2. Properties of total scored’; in the extended beta-binomial model
The total score of théth student is the total number of correctly answered iténs: Z}”:l Y;;. We get

m

1
E(Yi|m) = m— i+ 05) = mmy,
(i) = S+ ) =
var(Y;|m;) = Var(_zl}/i”m Zl T +05) (mi +65) EZ i +65) EZ i +95)
j= j= j=1 j=1
2 2
=m|m— ii(W-Jré-) -m ii(ﬁ-+5-)2— ii(ﬂ-jL&)
3 m 4 3 j m 4 3 j m 4 3 j
Jj=1 j=1 j=1
=mm;(1 — m;) — mks,
wherers = - " | §7. Therefore it holds:
a
E(Yi) = EE(Y;|m) = mE(m;) = m—— = my,
(Vi) = EE(¥ilm) = mE(m) = m— = my
var(Y;) = var(mm;) + E(mm;(1 — ;) — mss) = m2var(m;) + mE(m;) — mE(7?) — mss)
9 ab a ala+1)

(a+b)2(a+b+1)+ma+b_m(a+b)(a+b+1)

=mu(l — p)(1+ (m —1)p) — mks.

=m — MmK§

Finally, we are getting to theeliability of the total score Y; in the extended binomial model. We define
it according to [[11] as a fraction of variability between students (variability of conditional mean values
E (Y;|m;)) and variability of students’ total scorés:

_ var(E(Ylm) _ var(mm) _ a1 1
" var(Y;) var(Y;)  mu(l—p)(1+4 (m—1)p) — mks
= - . (©)
L+ (m—1p = aaty —1)

When the difficulties of items are all equgl = 0, we get the well known Spearman-Brown formuli (3).
For unequal difficulties of items, the reliability of total scores is a bit larger.

Formula [®) is very important for simulations. For the given parameters of beta-binomial distribution
and for the given difficulties;, j = 1,. .., m we can calculate the true reliabiliy,, and compare it with
estimates calculated from simulated data.

6. Simulations

So far, a single simulation was done. We investigated the behavior of the classical and logistic Cronbach’s
alpha estimator in the extended beta-binomial distribution via simulation for number of itemsl1,

number of studenta = 20 and items’ difficultiess; equidistantly distributed betweern0.1 and0.1. The
parameters, = b of the beta-binomial distribution were chosen from the inteftall5) with step0.2.

For each simulation we generated 100 data sets and computed bias and mean squared error of the classical
estimates of Cronbach’s alpha and of the logistic estimates of Cronbach’s alpha. For each out of 71 possible
values of parameters= b, also the theoretical value of reliability was evaluated, using the equhBtion (9).

In Figurell, the bias and mean squared error of classical and logistic estimate of Cronbach’s alpha is shown
for different values of the true reliability.
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Figure 1: The bias and mean squared error of classical (circle) and proposed logistic (solid circle) estimate of

According to Figurddl, the proposed logistic alpha performs as an estimate of reliability better than the
classical Cronbach’s alpha estimate in the extended beta-binomial model. The logistic alpha tends to give
worse results only for high true reliabilities, thus for smalb, which is the case of high probability of
cutting in the extended beta-binomial model.

7. Conclusions and Discussion

According to our simulations, the proposed logistic estimate of Cronbach'’s alpha performs better for binary
data of the extended beta-binomial model than the classical Cronbach’s alpha estimate.

When going through sectidi 5, one can conclude, that there is no need for beta distribution in the extended
model to get the same formula for true reliability of total scargsTherefore, more complex simulations
in this class of models should be done.

Also, the remaining task is to justify the proposed class of models for the real data (would Hosmer-
Lemeshow goodness-of-fit test work?). Or even better to justify the proposed esflinate (7) for the Rasch
model [8).

For testing the hypothesig, : var(T) = 0, there also exist other statistics besides difference of deviances.
Therefore, other modifications of classical Cronbach’s alpha estimate could also be defined and compared
with logistic alpha discussed in this article.
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