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Abstract

The paper deals with reliability of measurements in the context of multiple-item testing instruments,
such as educational tests. We concentrate on popular characteristic widely used for estimation of relia-
bility called Cronbach’s alpha, which is suited for normally distributed error term. Further we discuss
modifications of Cronbach’s alpha for the case of dichotomous (true-false) scoring.

1. Reliability

When describing the reliability of measurement, it is usually assumed that the measurementY is composed
out of two random variables: an unobservable true valueT and an error terme,

Y = T + e.

The error term is supposed to have a zero meanE(e) = 0, a positive variance, and to be independent from
the true valueT. Therefore:

var(Y ) = var(T ) + var(e).

Thereliability of such measurement is defined by:

R =
var(T )

var(Y )
= 1−

var(e)
var(Y )

(1)

and it compares variability of the error term with the variability of measured property. The smaller the
error variance relative to the observed score variance, the more reliable is the measurement. Thus, the
measurement is considered to be reliable when the value of reliability is close to 1.

Here, we should point out that reliability is sample-dependent. Therefore a certain test can have a different
reliability when given to a population with a high variability of tested knowledge than when given to a
population with a low variability of the knowledge.

The following simple lemmas give us a natural interpretation of the reliability.

Lemma 1.1 Having two independent measurementsY1 = T + e1, Y2 = T + e2 of the same propertyT,
where var(e1) = var(e2), the reliability can be expressed as the correlation between these two measure-
ments,R = corr (Y1, Y2).

Proof:

corr(T + e1, T + e2) =
cov(T + e1, T + e2)√

var2(Y )
=

cov(T, T ) + 0

var(Y )
=

var(T )

var(Y )
= R. 2
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In terms of educational tests, the reliability reflects to what extent it gives the same result when taken
repeatedly by the same person under the same conditions.

Lemma 1.2 The reliability can be expressed as the squared value of the correlation between the observed
score and the true score, corr2(Y, T ).

Proof:

corr2(Y, T ) =
cov2(T + e, T )

var(Y )var(T )
=

var2(T )

var(Y )var(T )
=

var(T )

var(Y )
= R.

2

Thus, the reliability of an educational test measures the strength of the relationship between the score
reached by a student and his/her true knowledge.

Unfortunately, none of these representations is useful when estimating the reliability of educational tests
because they cannot be directly estimated from the observed data. We cannot estimate the error variance
var(e), the true scoreT, nor the knowledge of a student by the same test twice and independently. Therefore,
when estimating the reliability of an educational test, we mostly take into account a fact that such a test is
a composite measurement.

2. Reliability of composite measurement

We consider the problem of measuring the reliability of multiple-item testing instrument, such as in ed-
ucational test. Consider a series of itemsYj = Tj + ej, for j = 1, . . . ,m, where the error termsej

are mutually independent and independent on the true scoresTk for k = 1, . . . ,m, having the same
variance var(ej) = σ2

e , and mean Eej = 0. The observed overall score of them items is given by
Y = Y1,+ · · ·+Ym and the unobservable overall true score is given byT = T1,+ · · ·+Tm. The reliability
of such a composite measurement is defined by (1) and with regard to the above mentioned assumptions
can further be expressed as:

Rm =
var(T )

var(Y )
=

var(T )

var(T ) + var(
∑
ej)

=
var(T )

var(T ) +mσ2
e

. (2)

The next lemma gives a relationship between reliability of a composite measurement and reliability of an
item in one special case:

Lemma 2.1 If for the items’ true score the following holds simultaneously:

var(T1) = · · · = var(Tm) = σ2
T

corr (Tj, Tk) = 1, j, k = 1, . . . ,m,

then all the reliabilitiesR1 of the items are equal and the reliability of the whole test can be expressed in
Spearman-Brown formula:

Rm =
mR1

1 + (m− 1)R1
(3)

Proof:

var




m∑

j=1

Tj



 =

m∑

j=1

var(Tj) +
∑∑

j 6=k

cov(Tj, Tk) =

= mσ2
T +m(m− 1)σ2

T = m2σ2
T ,

var




m∑

j=1

Yj


 = var




m∑

j=1

Tj


+ var




m∑

j=1

ej


 = m2σ2

T +mσ2
e .
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Therefore

Rm =
var
(∑m

j=1 Tj

)

var
(∑m

j=1 Yj

) =
m2σ2

T

m2σ2
T +mσ2

e

=
m

σ2
T

σ2
T

+σ2
e

1 + (m− 1)
σ2

T

σ2
T

+σ2
e

=
mR1

1 + (m− 1)R1
.

2

Related to this lemma is a fact, that reliability of an educational test is dependent on the number of its
items. Therefore, by adding suitable items to the test, the reliability could approach as close to1 as we
would desire. When comparing reliabilities of two educational tests, which in principle can’t have the same
number of items, we should bear this property of reliability in mind.

3. Cronbach’s Alpha

As a measure of reliability in classical test theory, Cronbach [2] proposed the coefficient alpha. This char-
acteristic estimates the consistency between items in a test and it is defined as:

αCR =
m

m− 1

var(Y )−
∑

j var(Yj)

var(Y )
=

m

m− 1

∑∑
j 6=k σjk∑∑
j,k σjk ,

(4)

whereσjk is the covariance of the pair(Yj , Yk). Novick and Lewis [3] has shown that Cronbach’s alpha is
always a lower bound of the reliability

αCR ≤ R

and is equal to reliability only if the conditions of Lemma 2.1 are fulfilled.

A very pleasant property of Cronbach’s alpha is the fact that this characteristic is easy to estimate from
the data simply by using sample variances and sample covariances instead of their population counterparts
in (4). This sample estimate can further be rewritten (for proof see [4]) in terms of the two-way ANOVA
as:

α̂CR =
MST −MSe

MST
= 1−

1

FT
, (5)

whereMST andMSE are the mean sums of squares andFT is statistics widely used for testing the
hypothesis var(T ) = 0 when normality of variables can be assumed.

Notation (5) gives important properties of our estimate:

• α̂ can take values between−∞ and 1, although only positive values make sense for reliability.

• The greater the estimate of reliability is, the better the educational test can distinguish between the
students. This points out the fact, that Cronbach’s alpha was designed as a coefficient of internal
consistency.

• The estimate equals one, if and only if there exist constantsai, bj , i = 1, . . . , n, j = 1, . . . ,m, so that
the score reached by thei-th student in thej-th item can be written asai + bj . This means that in this
case, to get all the information about students, one item would be enough. Therefore, when getting
too high an estimate of Cronbach’s alpha, one should actually think of lowering the number of items.

4. Cronbach’s alpha for dichotomous items

In fact, Cronbach’s alpha was designed as a generalization of the so called Kuder-Richardson formula 20
for dichotomous scoring, already proposed in 1937 in [6]:

α̂ =
m

m− 1

s2 −
∑m

j=1 pj(1− pj)

s2
, (6)

PhD Conference ’06 66 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206456
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wherepj is a relative frequency of correct answers to thejth item ands2 is a sample estimate of the
variance of total scores. One can easily see that (6) can be obtained when computing the sample estimate
of Cronbach’s alpha (4) in the case of dichotomous scoring, whereÊYj = pj is the proportion of correct
answers to thejth question andˆvar(Yj) = pj(1− pj).

Nevertheless, with dichotomous items, the assumptions of analysis of variance are violated. The scores
cannot be assumed to have normal distribution, and moreover, the variance is dependent on the mean value.
Therefore it is a matter of question to what extent is this estimate appropriate at all.

4.1. Proposed modifications of Cronbach’s alpha estimate

Formula (5) led Zvara [5] to the idea of modifying Cronbach’s alpha for the case of binary outcomes
by replacingFT by statistics used for testing the hypothesisH0 : var(T ) = 0 in logistic regression.
This is equal to testing the submodel B where the scoreYij depends only on the test item (and doesn’t
depend on the student’s ability) against the model A+B where the scoreYij depends on the student and
on the test item. Appropriate statistics is the difference of deviance in the submodel and in the model
X2 = D(B) −D(A+B), which has under the null hypothesis theχ2(n− 1) distribution. Therefore, the
proposed estimate is:

α̂log = 1−
n− 1

X2
. (7)

In this work we are trying to justify the estimate (7), so far called thelogistic estimate of Cronbach’s alpha
or shortlylogistic alpha, and to demonstrate its qualities by simulations.

5. Extended beta-binomial model

The model used most often for describing items with dichotomous scoring is the logit-normal model called
Rasch model [7], [8]. In this model the probability of a correct response of personi on itemj is given by:

P(Yij = yij ;πi, δj) =
exp[yij(πi + δj)]

1 + exp(πi + δj)
, (8)

whereπi describes the level of ability of personi andδj is an unknown parameter describing the difficulty
of item j.

Evaluating the true reliability of a composite measurement of items which obey Rasch model with certain
parametersπi, i = 1, . . . , n, and δj , j = 1, . . . ,m is a difficult task. That is why for simulations we
propose theextended beta-binomial model, where calculating the true reliability is tractable (see (9)). The
motivation of this model is following:

An often used model in reliability studies of binary data (see for example [9], [10]) is thebeta-binomial
model. In this model we assume, that the probability of successπi varies over subjectsi = 1, . . . , n
according to a beta distribution with parametersa andb, and, conditional to this probability, the total score
Yi of theith person is binomially distributed. Choice of beta distribution forπi is logical since it is a flexible
distribution and leads to mathematically tractable results. A pleasant property of the beta-binomial model
is the fact, that the first two moments for the total score are easy to compute:

E(Y ) = nµ = n
a

a+ b

var(Y ) = nµ(1− µ)

[
1 + (n− 1)

θ

1 + θ

]
,

whereµ is the marginal probability of success for any individual,θ = 1
a+b and θ

1+θ = ρ is the intraclass
correlation corr(Yij , Yik)(j 6= l) common for any subject and any pair of responses.
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An unpleasant property of this model for our situation is the fact that it does not allow for different diffi-
culties of items. Hand in hand with this goes the common-correlation structure which is impossible in our
case.

When trying to extend for different difficulties of items and yet preserve the structure of the beta-binomial
model, we can think of the following model: We assume again, that the probability of successπi varies
over subjectsi = 1, . . . , n according to a beta distribution with parametersa andb. We qualify the impact
of the difficulty of thejth item by a small numberδj , assuming that

∑m
j=1 δj = 0. When parametersa, b

are large enough, there is a slight danger that the sumsπi + δj get outside the interval(0, 1). Therefore,
Yi1, . . . , Yim are for a givenπi independent random variables with alternative distribution alt(πi + δj). The
total scoresYi are sums of such random variables.

5.1. Properties ofYij in the extended beta-binomial model

For conditional mean and variance, it holds

E(Yij |πi) = E(Y 2
ij |πi) = P(Yij = 1|πi) = πi + δj ,

var(Yij |πi) = E(Y 2
ij |πi)− (E(Yij |πi))

2 = (πi + δj)(1− (πi + δj)).

Therefore the unconditional mean is

E(Yij) = EE(Yij |πi) =
a

a+ b
+ δj = µ+ δj ,

where we assignedµ = a/(a+b) for the mean value of the beta distribution. For the unconditional variance
it holds:

var(Yij) = var(E(Yij |πi)) + E(var(Yij |πi))

= var(πi + δj) + E((πi + δj)(1− (πi + δj)))

=
ab

(a+ b)2(a+ b+ 1)
+

∫ 1

0

(π + δj)(1 − (π + δj))
1

B(a, b)
πa−1(1− π)b−1dπ

=
ab

(a+ b)2(a+ b+ 1)
+ (µ+ δj)−

a(a+ 1)

(a+ b)(a+ b+ 1)
− 2δj

a

a+ b
− δ2j

= µ(1 − µ) + δj(1 − 2µ− δj).

Becauseρ = θ
1+θ = 1

a+b+1 , the covariance of variablesYij , Yit for j 6= t equals

cov(Yij , Yit) = cov(E(Yij |πi),E(Yit|πi))

= cov(πi + δj , πi + δt) = var(πi)

=
ab

(a+ b)2(a+ b+ 1)
= ρµ(1− µ),

Let’s define

Cj = 1 + δj
1− 2µ− δj
µ(1− µ)

.

Then the correlation betweenYij andYit for j 6= t is

corr(Yij , Yit) =
cov(Yij , Yit)√
varYijvarYit

= ρ
1√
CjCt

.

For constant difficulties of itemsδj = 0 we get the common correlation structure, corr(Yij , Yit) = ρ. For
unequal difficulties of items it is natural to assumea = b (to assume symmetric distribution of knowledge),
thereforeµ = 1/2. In this caseCj = 1− 4δ2j , thus the impact ofδ < 1 is small.
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5.2. Properties of total scoresYi in the extended beta-binomial model

The total score of theith student is the total number of correctly answered itemsYi =
∑m

j=1 Yij . We get

E(Yi|πi) = m
1

m

m∑

j=1

(πi + δj) = mπi,

var(Yi|πi) = var(
m∑

j=1

Yij |πi) =

m∑

j=1

(πi + δj)(1 − (πi + δj) = m
1

m

m∑

j=1

(πi + δj)−m
1

m

m∑

j=1

(πi + δj)
2

= m


πi −


 1

m

m∑

j=1

(πi + δj)




2

−m




1

m

m∑

j=1

(πi + δj)
2 −


 1

m

m∑

j=1

(πi + δj)




2



= mπi(1− πi)−mκδ,

whereκδ = 1
m

∑m
j=1 δ

2
j . Therefore it holds:

E(Yi) = E E(Yi|πi) = mE(πi) = m
a

a+ b
= mµ,

var(Yi) = var(mπi) + E(mπi(1− πi)−mκδ) = m2var(πi) +mE(πi)−mE(π2
i )−mκδ)

= m2 ab

(a+ b)2(a+ b+ 1)
+m

a

a+ b
−m

a(a+ 1)

(a+ b)(a+ b+ 1)
−mκδ

= mµ(1− µ)(1 + (m− 1)ρ)−mκδ.

Finally, we are getting to thereliability of the total score Yj in the extended binomial model. We define
it according to [11] as a fraction of variability between students (variability of conditional mean values
E(Yi|πi)) and variability of students’ total scoresYi:

Rm =
var(E(Yi|πi))

var(Yi)
=

var(mπi)

var(Yi)
=

m2µ(1 − µ)ρ

mµ(1− µ)(1 + (m− 1)ρ)−mκδ

=
mρ

1 + (m− 1)ρ− κδ

µ(1−µ)

. (9)

When the difficulties of items are all equalδj = 0, we get the well known Spearman-Brown formula (3).
For unequal difficulties of items, the reliability of total scores is a bit larger.

Formula (9) is very important for simulations. For the given parameters of beta-binomial distributiona, b,
and for the given difficultiesδj , j = 1, . . . ,m we can calculate the true reliabilityRm and compare it with
estimates calculated from simulated data.

6. Simulations

So far, a single simulation was done. We investigated the behavior of the classical and logistic Cronbach’s
alpha estimator in the extended beta-binomial distribution via simulation for number of itemsk = 11,
number of studentsn = 20 and items’ difficultiesδj equidistantly distributed between−0.1 and0.1. The
parametersa = b of the beta-binomial distribution were chosen from the interval〈1, 15〉 with step0.2.
For each simulation we generated 100 data sets and computed bias and mean squared error of the classical
estimates of Cronbach’s alpha and of the logistic estimates of Cronbach’s alpha. For each out of 71 possible
values of parametersa = b, also the theoretical value of reliability was evaluated, using the equation (9).

In Figure 1, the bias and mean squared error of classical and logistic estimate of Cronbach’s alpha is shown
for different values of the true reliability.
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Figure 1: The bias and mean squared error of classical (circle) and proposed logistic (solid circle) estimate ofαCR

According to Figure 1, the proposed logistic alpha performs as an estimate of reliability better than the
classical Cronbach’s alpha estimate in the extended beta-binomial model. The logistic alpha tends to give
worse results only for high true reliabilities, thus for smalla, b, which is the case of high probability of
cutting in the extended beta-binomial model.

7. Conclusions and Discussion

According to our simulations, the proposed logistic estimate of Cronbach’s alpha performs better for binary
data of the extended beta-binomial model than the classical Cronbach’s alpha estimate.

When going through section 5, one can conclude, that there is no need for beta distribution in the extended
model to get the same formula for true reliability of total scoresYi. Therefore, more complex simulations
in this class of models should be done.

Also, the remaining task is to justify the proposed class of models for the real data (would Hosmer-
Lemeshow goodness-of-fit test work?). Or even better to justify the proposed estimate (7) for the Rasch
model (8).

For testing the hypothesisH0 : var(T ) = 0, there also exist other statistics besides difference of deviances.
Therefore, other modifications of classical Cronbach’s alpha estimate could also be defined and compared
with logistic alpha discussed in this article.
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