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Abstract

The aim of this paper is to present an overview of the methods used in survival analysis and especially
modeling survival data. Since the topic of my future Ph.D. thesis isStatistical models for correlated
survival datawe introduce the use of frailties as an equivalent of random effects in common statistical
modeling together with its connection to correlation. Frailty model, how model with frailties is called,
uses frailties as a parameter for individuals. Those who are most frail will experience an event earlier
than others.

Keywords: survival analysis, frailty models

1. Introduction

Survival analysis is analysis of time to the occurrence of an event. Examples of such data arise in many
diverse fields, such as medicine, biology, public health, epidemiology, engineering, economics, and demog-
raphy. In epidemiology the event is not always a death, but it can be, for example, a first occurrence of
relapse, duration of response to treatment, time to development of a disease, duration of stay in hospital,
and duration of a seizure. Survival analysis attempts to answer questions such as: what is the fraction of
a population which will survive past a certain time? Of those that survive, at what rate will they die or
fail? Can multiple causes of death or failure be taken into account? How do particular circumstances or
characteristics increase or decrease the probability of survival?

Analysis of survival data is very often complicated by the issue of censoring, where the event is known
only to not have occurred during a certain period of time and by truncation, where the individuals enter the
study only if they survive a sufficient length of time or individuals are included in the study only if the event
has occurred by a given time. These two issues play a very important role in estimating model parameters
and in modeling survival data. The theoretical basis for the analysis of survival data has been solidified by
connecting it to the study of counting processes and martingale theory [6]. This theory, among many other
benefits, substantially helped with accounting for censoring.

In this paper, we start with an introduction to the key concepts in survival analysis: the hazard, survival,
and cumulative hazard functions. Then we turn to regressions models with emphasis on frailty model as an
extension of the Cox proportional hazards model. The frailty model may be also called the shared frailty
models because the frailty may be parameter shared among members of one group or family. We also
discuss some models used in multivariate survival data and show the universality of the concept of frailties.

2. Basic concepts

Random variables analyzed in survival analysis are called the failure timesT and they are always non-
negativeT ≥ 0. T can either be discrete (taking a finite set of values, e.g.a1, a2, . . . , an) or continuous
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(defined on[0,∞)).

The concept used in describing time-to-event phenomena is the survival function, the probability of an
individual surviving beyond timet. It is defined as

S(t) = P(T > t).

Survival function is non-increasing function with a value of1 at the origin and0 at infinity. WhenT is
a continuous random variable thenS(t) is a non-increasing continuous function. When T is a continuous
variable, the survival function is a complement of the cumulative distribution function,S(t) = 1 − F (t),
whereF (t) = 1− P (T ≤ t). The survival function is the integral of the probability density functionf(x).
Then

S(t) = 1− F (t) = 1− P (T ≤ t) =

∫ ∞

t

f(x)dx, (1)

and

f(x) = −
dS(x)

dx
.

Fundamental in survival analysis is the hazard function. It is also known as the conditional failure rate
in reliability, the force of mortality in demography, the intensity function in stochastic processes, the age-
specific failure rate in epidemiology or simply as the hazard rate. The hazard rate is defined by

h(t) = lim
∆t→0

P(T ∈ [t, t+ ∆t)|T ≥ t)

∆t
=

= lim
∆t→0

P(T ∈ [t, t+ ∆t))

∆t · P(T ≥ t)
=

= lim
∆t→0

F (t+ ∆t)− F (t)

∆t · S(t)
=
F ′(t)

S(t)
. (2)

Then

h(t) =
F ′(t)

S(t)
=

(1− S(t))′

S(t)
=
−S′(t)

S(t)
= − ln′ (S(t)) . (3)

A related quantity is the cumulative hazard function, defined by

H(t) =

t∫

y=0

h(y)dy = − lnS(t) + lnS(0) = − ln (S(t)) . (4)

Then

S(t) = e−H(t).

3. Modeling survival data

A problem frequently encountered in analyzing survival data is that of adjusting the survival function to
account for concomitant information (sometimes referred to as covariates, explanatory variables or inde-
pendent variables).

A popular concept for modeling the relationship of covariates to a survival outcomes is represented by
the Cox proportional hazards model. LetXij be the covariate of theith person, wherei = 1, . . . , n and
j = 1, . . . , p. The set of covariates then, like in linear regression, forms ann× p matrix andXi is used to
denote the covariate vector for subjecti (theith row of the matrix).
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The Cox model specifies the hazard for individuali as

hi(t) = h0(t) · e
Xiβ , (5)

whereh0 is unspecified nonnegative function of time called the baseline hazard, andβ isp×1 column vector
of coefficients. Event rates cannot be negative (observed deaths cannot unhappen), and the exponential thus
plays the an important role in ensuring that the final estimates are a physical possibility.

Because the hazard ratio for two subjects with fixed covariate vectorsXi andXj ,

hi(t)

hj(t)
=
h0(t) · eXiβ

h0(t) · eXjβ
=
eXiβ

eXjβ
= e[Xi−Xj ]β (6)

is constant over time, the model is also known as the proportional hazards model. Estimations ofβ is based
on the partial likelihood function introduced by Cox. Commonly used algorithm for finding approximations
to the roots of real-valued function is the Newton-Raphson algorithm. The idea of the method is that one
starts with a value which is reasonably close to the true root, then replaces the function by its tangent and
computes the root of this tangent. This root of the tangent will typically be a better approximation to the
function’s root. The procedure is iterative and compares thenth guess withn + 1th, with the initial value
usually set to0. This algorithm is robust for the Cox partial likelihood. Convergence problem are very rare
and easily addressed by simple methods such as step-halving.

3.1. The concept of frailty

In the last several years there has been active research in the area of survival models involving random
effects. In this setting, a random effect is a continuous variable, that describes excess of risk or frailty for
distinct categories, such as individuals or families. The idea is that individuals are characterized by frailty
parameter that reflects their state of health. Those who are most frail will die earlier than the others.

Frailty models are also used in making adjustments for overdispersion in survival studies. Here, the frailty
represents the total effect on survival of the covariates not measured when collecting information on indi-
vidual subjects. If these effects are ignored, the resulting survival estimates may be misleading. Corrections
for overdispersion allow for adjustments for other important effects that were unaccounted for in the study.

Computationally, frailty parameters are usually viewed as unobserved covariates. This leads to the use
of EM (expectation-maximization) algorithm as an estimation tool. EM algorithm is an algorithm for
obtaining maximum likelihood estimates of parameters in probabilistic models, where the model depends on
unobserved latent variables. EM alternates between performing an expectation (E) step, which computes an
expectation of the likelihood by including the latent variables as if they were observed, and a maximization
(M) step, which computes the maximum likelihood estimates of the parameters by maximizing the expected
likelihood obtained at the E step. The parameters obtained at the M step are then used to begin another
E step, and the process is repeated. However, the algorithm is slow, proper variance estimates require
further computation, and no implementation appears in any of the more widely available packages. The
computation can be approached instead as a penalized Cox model.

The most common model used is a shared frailty model. As we will see, it is an extension of the proportional
hazards. Assume that each subjecti, i = 1, . . . , n, is a member of a single groupj, j = 1, . . . , q. Then we
write the proportional hazards model

hi(t) = h0(t) · e
(Xiβ+Ziω), (7)

whereXi andZi are theith rows of covariate matricesXn×p andZn×p respectively.X andβ correspond
to p fixed effects in the model,ω is a vector containing theq unknown random effects or frailties, andZ is
a design matrix –Zij equals1 if subjecti is a member of familyj, 0 otherwise.

For subjecti, which is a member of thejth family the proportional hazards model can be also written as

hi(j)(t) = h0(t) · wj · e
Xiβ , (8)
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where thewj is the frailty parameter for familyj. This can be easily rewritten in the form of equation 7,
with i ranging over all subjects,

wj = eωj ,

andZ a matrix of indicator variables such thatZij = 1 if subjecti is a member of familyj and0 otherwise.
In this model, each individual can belong to only one family. The frailty parameterwj has multiplicative
effect on the hazard rates.

According to a penalty function and the choice of a design matrix we distinguish between gamma frailty
model and Gaussian random effects model. The advantage of frailty having either of these two distributions
is that the shared frailty model can be written exactly as a penalized likelihood and further estimation can
be done more easily. Additional assumptions are discussed below.

Penalty function

p(ω) = (1/ω) ·
∑

(ωi − e
ωi)

and the design matrixZ as defined for shared frailty model gives us the equivalence with gamma frailty
model. Theωis are distributed as the logs of iid (independent identically distributed) random variables and
the tuning parameterθ is their variance. For this frailty distribution, the correlation of subject within groups
is θ/(2 + θ).

Penalty function

p(ω) = (1/2ω) ·
∑

ω2
i

and general design matrixZ gives the Gaussian random effects model. The tuning parameterθ of the
penalty function is the variance of theωis.

The fact that both penalties are the log-likelihoods for a random sample ofω1, . . . , ωn from the appropriate
distribution raises the question whether other frailty distributions can be accommodated within penalized
framework. From the viewpoint of the penalized fitting procedureθ is as nuisance or ”tuning” parameter of
the computation.

The variance can be a fixed parameter set by the user, either set directly or chosen indirectly by specifying
the degrees of freedom for the random effects term. Next option is to seek an overall best variance by
minimizing the AIC (Akaike’s Information Criterion) or corrected AIC. The idea behind the AIC is to
examine the complexity of the model together with goodness of its fit to the sample data, and to produce
a measure which balances between the two. The formula for computing AIC involves the likelihood and
number of parameters of examined model. The corrected AIC uses much larger penalty as the number of
parameters approaches the sample sizen. This leads to models which are a bit more conservative in the
amount of model parameters.

For the gamma frailty, the profile likelihood forθ can be used. This gives a global solution that is identical
[6] to the EM algorithm for a shared gamma frailty model. When a Gaussian distribution of the frailty
is chosen, the varianceθ of the random effect can be chosen based on an approximate REML (restricted
maximum likelihood) equation. Restricted maximum likelihood serves to estimate the variance of any
distribution and is also based on the likelihood principle.

3.2. Shared Gamma frailty models

As it was said, the most commonly used estimation procedure in frailty models is the EM algorithm. It
gives discrete estimator of the distribution and does not allow direct estimation of the hazard function.
Rondeaou et al. [2] present how to use maximum penalized likelihood estimation in estimating continuous
hazard function in a shared gamma-frailty model with right-censored and left-truncated data. Instead of
penalizing the frailties [6] the hazard function is penalized.

Let us consider the model in which the hazard function will partly depend on an unobservable random
variable thought to act multiplicatively on the hazard and allow for stratum-specific baseline hazards. For
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thejth individual(j = 1, . . . , nih) of thehth stratum(h = 1, . . . ,K) and theith group(i = 1, . . . , G),
let Tihj denote the survival times under study. We also assume the independence of survival times and
left-truncation times. The censoring times are assumed independent of the failure times and of the frailties
Zi.

Then the hazard function conditional on the frailty is

hihj(t|Zi) = Zi · h0h(t) · eXihjβ, (9)

whereh0h(t) is the baseline hazard function for stratumh; Xihj = (X1ihj , X2ihj , . . . , Xpihj) denotes the
covariate row vector for thejth individual of stratumh and groupi, andβ is the corresponding vector of
regression parameters.

Conditionally on the frailtyZi, the failure timesTih1, Tih2, . . . , Tihnih
are assumed to be independent. It

is also assumed that theZi’s are independently and identically distributed from a gamma distribution with
mean1 and unknown varianceθ. The probability density function is then

g(z) =
z(1/θ−1) · e−z/θ

Γ(1/θ) · θ1/θ
. (10)

Large values ofθ signify a closer positive relationship between the subjects of the same group and greater
heterogeneity among the groups.

Instead of the use of the Cox partial likelihood the full likelihood obtained by integrating out the frailty
Zi from the joint likelihood is presented. Because of allowance for left-truncated data the likelihood is
expressed conditional on involved failure times. Rondeau et al. [2] give the exact formula of the full
log-likelihood which can be directly maximized to obtain the estimates ofβ, θ and the baseline hazard
function h0(t), which is assumed to be smooth. Maximum penalized estimators (MPnLE) ofh0(t), β
andθ are then obtained by maximizing function consisting of the full log-likelihood and the penalty. The
penalty has large values for rough functions and contains also smoothing parameter specific for particular
stratum. The idea is that the penalty is for large values of the smoothing parameter forced toward zero
and if the smoothing parameter is small, then the main contribution to penalized likelihood will be the full
log-likelihood mentioned above.

Rondeau et al. also show the way how to obtain estimators of the baseline hazard function. It is an ap-
proximation obtained by using splines. Splines are polynomial functions which are combined linearly to
give the interpolation of a function. In addition, confidence bands for the baseline hazard estimators can
be given using the variance estimates. The choice of smoothing parameter can be done heuristically by
plotting several curves and by choosing that which seems most realistic.

3.3. Nested Gamma frailty models

The frailty model is a random effect survival model, which allows for unobserved heterogeneity or for sta-
tistical dependence between observed survival data. The nested frailty model accounts for the hierarchical
clustering of the data by including two nested random effects. They substitute the frailtyZi from equa-
tion 9, only the structure is a bit more complicated by the fact that one frailty is nested into another one
which refers to higher hierarchical level. Thus nested frailty models are particularly appropriate when data
are clustered at several hierarchical levels and it does not matter if the situation arised naturally or by design
of the study. In such cases it is important to estimate the parameters of interest as accurately as possible
by taking into account the hierarchical structure of the data. Rondeau et. al [3]. present a maximum pe-
nalized likelihood estimation (MPnLE) to estimate non-parametrically a continuous hazard function in a
nested gamma-frailty model with right-censored and left-truncated data. The estimators for the regression
coefficients and the variance components of the random effects are obtained simultaneously.

To demonstrate the MPnLE method and the nested frailty model two examples were given [3]. One was for
modeling the effect of particulate air pollution on mortality in different areas with two levels of geographical
regrouping. The other application concerned recurrent infection times of patients from different hospitals.
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Simulation study was performed and it proved that the semi-parametric approach yields satisfactory results.
Using a shared frailty model instead of nested frailty model with two levels of regrouping leads to inaccurate
estimates, with an overestimation of the variance of the random effects. Next, even when the frailty effects
are fairly small in magnitude, they are important since they alter the results in a systematic pattern.

Let us consider a multilevel proportional hazards model with two sets of nested random effects that act
multiplicatively on the hazard, so that a large value of these variables increases the hazard. There are
several types of models for expressing how the hazard function depends on the explanatory variables. The
most popular model when analyzing epidemiological survival data is the proportional hazards model even
if some other models as additive or accelerated failure time can be used. Proportional hazards models are
semi-parametric and fairly flexible and their covariates can be time-dependent. We treat the case of a cohort
with G independent clusters(i = 1, . . . , G). Within the ith cluster, there areJi correlated sub-clusters
(j = 1, . . . , Ji). We treat the case of right-censored and left-truncated data.Tijk denotes the survival times
under study for subjectk (k = 1, . . . ,Kij) from subgroupj, and groupi. We also assume the independence
of survival timesTijk and left-truncation times.

Then we define two random effectsvi andwij and assume that the cluster-level random effectsvi and the
sub-cluster random effectswij are independent and gamma-distributed random effects(Γ(1/α; 1/α)) and
(Γ(1/η; 1/η)) with E(vi) = 1, var(vi) = α andE(wij) = 1, var(wij) = η.

For identifiability, they have a mean equal to1 at birth (i.e. at durationtijk = 0). If the variance is null,
then observations from the same group are independent. A larger variance implies greater heterogeneity in
frailty across groups and a greater correlation of the survival times for individuals belonging to the same
group. Mainly for reasons of mathematical convenience, the frailty terms are often assumed to follow a
gamma distribution. Gamma distribution is chosen because of its correspondence to shared frailty model
and the possibility to express the shared frailty model as penalized likelihood. To construct the likelihood
function, apart from the usual assumption of independent censoring, the censoring must be non-informative
for vi andwij .

The hazard function conditional on the two frailtiesvi andwij , for individual(i, j, k) is

hijk(t|vi, wij) = vi · wij · h0(t) · e
Xijkβ , (11)

whereh0(t) is the baseline hazard function;Xijk = (X1ijk, . . . , Xpijk) denotes the covariate row vector
for the kth individual, with p the number of covariates, andβ is the corresponding vector of regression
parameters.

Rondeau et al. estimated the baseline hazard function in a nested frailty model non-parametrically using
a penalized full likelihood assuming both left-truncated and right-censored survival data. This makes it
possible to estimate simultaneously the regression coefficients, the variance component parameters and es-
pecially a smooth hazard function, which cannot be correctly estimated using conventional non-parametric
methods.

A major advantage of nested frailty models is their ability to analyze data that are also correlated at several
different hierarchical levels. The eventual hierarchical structure of the data needs to be taken into account in
survival analysis to obtain accurate inferences. Ignoring random cluster effects may result in overlooking the
importance of certain cluster effects and calls into question the validity of traditional statistical techniques
such as the shared frailty model. The nested frailty model proved helpful in diagnosing the source of
correlation in data. This method can be easily extended to bivariate frailty models, making it possible to
treat two events simultaneously per subject.

3.4. Multivariate survival data

The shared frailty model can also be viewed as a specific kind of the common risk model. The frailty is
the term that describes the common risk, acting as a factor on the hazard function. In most settings the
common risks are assumed random and therefore we can speak about mixture model. Given the frailties the
observations are assumed independent. This is then called conditional independence.
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The bivariate survival function can be defined asS(t1, t2) = P (T1 > t1, T2 > t2) and in the multivariate
case obviouslyS(t1, t2, . . . , tn) = P (T1 > t1, T2 > t2, . . . , Tn > tn). P. Hougaard [7] shows also the
forms of the bivariate survival function by assuming certain distributions of the frailty. It is also shown
that the dependence can be assessed by by the rank-based correlation-type measures like Kendall’sτ or
Spearman’sρ and these measures depend only on the frailty distribution. That is, they are independent of
the hazard function.

In many cases, we may need extensions of the common risk models discussed above and, similarly, more
models with varying degrees of dependence. The general frailty approach can be used to create a random
treatment by group interaction or other models with several sources of variation. Nested model discussed
by Rondeau et al. may be seen as special univariate case of multivariate models discussed in [7]. It was
already mentioned above that the two levels in nested model can be extended. This situation can arise in the
field of genetics where there are several sources of variation present. For twins the question may be whether
the dependence is the same for monozygotic and dizygotic twins. P. Hougaard shows also an example of the
nested trivariate parallel data model, which is a model that would be applicable for a sibling group where
individuals 1 and 2 are twins and individual 3 is a single birth. Survival times of the first two siblingsT1,
T2 may be strongly dependent.T3 may show more modest dependence. This scenario can be accomplished
by three frailties. In general, each frailty may have different distribution. P. Hougaard proposes the use of
semi-parametric estimate. That requires extension for a program for the shared frailty models and seems to
be complicated.

So far we discussed multiplicative frailty models but additive models are plausible too, mainly because the
multiplicative models are not able to handle all dependence structures. Therefore, the additive models seem
to be more operational. The disadvantage of the additive model is that more parameters are needed to define
the models where the parameters cannot be identified from subsets of the data.

Frailty can be also modeled as stochastic process. P. Hougaard discusses independent increments frailty
models, piecewise gamma model, moving average model, hidden cause of death model and the Woodbury-
Manton model. All these models apply when there is a instantaneous and/or short-term frailty. The ideas are
given, however the mathematical complexity of these models is a major problem. Instantaneous dependence
has a mathematical appeal allowing for many theoretical evaluations. It is obtained by using a frailty varying
randomly over time, where the hazard is described by the independent increments of the process. Short-
term dependence models seem to be a more relevant extension of the frailty model and from mathematical
point of view, there seems to be a lot of potential. The key problem is the computational burden. Models
with with time-varying frailties seem particularly important for recurrent events data, but most such model
treat only additive piecewise constant frailties and with a limited number of intervals. [7]

4. Conclusion

Short overview of frailty models used in survival analysis was given together with discussion and references
to available literature. Discussion concerning censoring, truncation, estimation of parameters using the
likelihood, partial likelihood and other methods together with numerical procedures exceeds the scope of
this paper and thus were only slightly mentioned. The use and rising popularity of frailty models used in
analysis of correlated censored and possibly truncated data is relatively new and active research in this field
is taking place. In section about multivariate survival data there is a bit of a discussion about correlation
and conditional independence. In my prospective Ph.D. thesis I would like to focus on statistical aspects of
models involving frailty parameters and this paper was in my opinion a good start to accomplish that goal.
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