
Agent-based Simulation of Processes in Medicine

Bošanský, Branislav
2008

Dostupný z http://www.nusl.cz/ntk/nusl-85049

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 28.09.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-85049
http://www.nusl.cz
http://www.nusl.cz

Branislav Bošanský Agent-based Simulation of Processes in Medicine

Agent-based Simulation of Processes in Medicine

Post-Graduate Student:

MGR. BRANISLAV BOŠANSKÝ
Supervisor:

DOC. ING. LENKA LHOTSKÁ, CSC.

Department of Medical Informatics
Instutite of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague, Czech Republic

Department of Cybernetics
Faculty of Electrical Engineering

Czech Technical University in Prague
Technická 2

166 27 Prague, Czech Republic

bosansky@euromise.cz lhotska@labe.felk.cvut.cz

Field of Study:
Biomedical Informatics

This research was partially supported by the project of the Institute of Computer Science of Academy of Sciences
AV0Z10300504, the project of the Ministry of Education of the Czech Republic No. 1M06014 and by the research
program No. MSM 6840770012 ”Transdisciplinary Research in Biomedical Engineering II” of the CTU in Prague.

Abstract

Process modelling has proven itself as a
useful technique for capturing the work practice
in companies. In this paper, we focus on its
usage in the domain of medical care. We analyze
the problem of the simulation of processes
and present an approach based on agent-based
simulations. We formally define an enhanced
process language, the algorithm transforming
these enhanced processes into the definition
of agents’ behavior, and the architecture of
the target multi-agent system simulating the
modeled processes in some environment. The
example of usage is given in the form of
a critiquing expert system proposal that uses
formalized medical guidelines as the knowledge
base.

1. Introduction

Process modelling is a widely used technique offering
a simple and understandable view on the work practice
within a team or a company, and it is mainly utilized by
managers and executives in various fields of industry.
The area of medical care also offers an opportunity for
process modelling, and its usage in computer systems,
such as hospital information system (HIS) or workflow
management systems (WfMS). However, there are many
problems with applying this proved technique into the
medical care [1], hence it is not as spread as it could be.
In our work, we focus on the simulation of processes
in general, we study the possibility of using agents and
multi-agent system for this purpose, but we also want to
apply these state-of-the-art methods into a development
of an expert system for physicians that would use
processes as a knowledge base.

In the area of processes in medical care, most of the
authors distinguish two main categories [1]. Firstly,
there are processes that directly relate to treatment of
a patient (e.g. describing treatment of a patient with
a chronic ailment), and secondly there are processes
that relate to organizational duties (e.g. the process of a
reservation of a clinical bed for a patient within different
hospital facilities). In our approach, however, we do not
differentiate between these two types of processes and
we try to work with them in the same way as a set of
process diagrams and use them together. The reason for
combining different sources of knowledge is to enable
validation of applied procedures, on a general level, as
well as with a local practice in a hospital, that can differ
in each facility and that is captured as clinical processes.

The main goal of this paper is to summarize all
aspects necessary for agent-based process simulation in
a medical environment leading to an critiquing expert
system. Therefore we firstly discuss more exhaustively
processes and process simulation and its specific
characteristics in the medical domain in Secion 2, where
we also reason about the advantages that utilization of
agents can bring into the field of process simulations. In
Section 3 we present formal definitions of our enhanced
processes. We describe the architecture of a multi-
agent system that can simulate these processes in an
environment in Section 4. Then in Section 5 we propose
the vision of the whole expert critiquing systems, that
can use this approach, and conclude in Section 6.

2. Process Modelling in Medicine

The work practice (i.e. duties of employees and
organizational procedures – such as a specification of
an activities’ order, an assignment of employees as
well as necessary resources to these activities, etc.) is

PhD Conference ’08 19 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

usually captured using a set of processes describing the
functioning of a work team or the whole company. These
processes can be stored as a document in a textual form,
and often these documents also contains their models,
made using some of process modelling languages,
as visual diagrams, which improve understanding and
lucidity of the information.

There are several studies [1, 2, 3] that analyze the
problems of applying process modelling or usage of
workflow management systems in medical care. They
all agree that the implementation of this approach can
improve current problems with organization, reduce the
time of hospitalization and finally reduce the costs.
However, they also point out, that till now is the usage of
processes rather low and insufficient. The main reasons
were identified as more complex processes than in other
fields of industry, or problems with interoperability
resulting from inconsistencies of databases and used
ontology or protocols. Finally, real processes in medical
care are very variable hence the system that uses them
has to be prepared for such a dynamic environment
and multiple variations of similar processes. This factor
prohibits us from applying standart workflow systems,
that can not handle exceptions nor irregular situations.

As we have already stated, processes in medical care
can be seen in several levels. Using terminology from
[1] we can differentiate the organizational processes
and the medical treatment processes. The latter type
can be seen as medical guidelines that represent the
recommended diagnosis and treatment procedures for
a patient in a specific area of healthcare. They are
approved by medical experts in related field based
on the newest studies, literature reviews, and expert
knowledge. There have been several surveys aimed at
the importance of guidelines and generally they are
considered to be a useful method for standardizing the
medical practice, improving quality of treatment [4], or
lowering the patient’s medical expenses [5]. Currently,
the guidelines are being approved as a document (i.e.
in a textual form), which prohibits one from using them
directly in a computer-based system – such as hospital
information system, or an expert system helping a
physician or a patient. Hence there has been a significant
focus on the formalization of medical guidelines into a
formal language [6]. Many formal languages have been
developed, such as ASBRU [7], EON [8], GLIF [9], or
PROforma [10]. They are all quite different and based on
different foundations, but they are all trying to capture
the same thing – the recommended process of treatment
of a patient in the specific area of healthcare.

In order to achieve corresponding simulation of
processes, we need to simulate both of these types, as

they affect each other – an organizational process is
strictly limited by patient’s health conditions, on the
other hand, a physician has to take specific clinical
processes and hospital organization into consideration
when treating a patient. Furthermote we use both
types in the same way – i.e. formalized using the
same theoretical foundations, but in possibly different
languages. In spite of several other proposed approaches
(e.g. like in [11]), we do not try to convert one formalism
into other one (e.g. formalize medical guideline using
a business process modelling language), but modify
existing formal languages in order to capture all
necessary information for the agent-based simulation.

2.1. Using Agents in Simulations of Processes

Generally, we are interested in a simulation of processes
in a certain environment by means of agents and we
want to create a multi-agent system that would be
coordinated and organized by a set of processes. Let us
therefore discuss the advantages and disadvantages of
this approach.

Using agents to simulate processes in companies is
a promising alternative to standard process simulation
methods based on statistical calculations [12]. There are
several studies addressing this issue [13, 14, 15], and
they all highlight the advantages, that agents are more
accordant with people, they can be autonomous, they
can plan their assignments and they can distribute and
coordinate their activities. However, in practice, there
are not many existing applications that would interpret
a process language in a multi-agent system and let
agents be guided directly by modeled processes. In some
cases, even though the agents are supposed to simulate
processes, their behavior is hand-coded depending on
processes (e.g. in [14]) using some standard decision
mechanism (e.g. rules, FSM, etc.). Several approaches
in the area of WfMS were discussed in [16] or
even processes modelling in [17], however no existing
implementation or transforming algorithm for agents’
behavioral definition was presented. In both these cases
authors try to cover much wider concepts (e.g. different
views on a single process by different agents, concept
of trust etc.) which prohibits them from proposing the
universal MAS architecture and algorithm interpreting
the processes into behavior of agents. Therefore we
introduced a new approach to a process simulation in
[18] that defines a universal multi-agent system and
transforming algorithm that enables process simulation
by means of reactive autonomous agents.

When we closely focus on using agents in process
simulation in medical care, we can see that several
problems, mentioned in previous section, can be

PhD Conference ’08 20 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

overcome. When agents represent the hospital staff or
patinets, they do not have only to follow the modeled
processes, but also their own pre-defined goals, hence
the exceptions or interruptions of process execution can
be handled much easier. Furthermore, using enhanced
processes described in [18], the variability of processes
can be assured.

3. Formal Definition of Agent-based Process
Simulation

In order to correctly define multi-agent system that
simulates modeled processes we firstly need to properly
define processes modeled in process diagrams.

Definition 1: We call a seven-tuple D =
(P, S,E,C,O,A,R) a process diagram, when:

• P is a non-empty set of processes (activities).

• S is a set of passive states that describes current
state of environment.

• C is a set of connectors that can split or join the
control flow.

• E ⊆ ({P, S,C} × {P, S,C}) is a non-empty set
of control edges that connect processes and define
a control flow of a diagram.

• O is a set of objects from the environment. Each
object has a set of parameters that can be modified
by processes.

• A is a non-empty set of roles of agents that
participate in activities.

• R ⊆ ({P,O,A}×{P,O,A}) is a set of auxiliary
edges (relations) connecting agents and objects
with processes.

• Process diagram is a directed graph G = (V,X),
where V = (P ∪S∪C∪O∪A) and X = (E∪R)

Furthermore, when D is a process diagram, and

• pv is a set of vertexes preceding to the vertex v;
pv = {n ∈ V ; (n, v) ∈ E}

• sv is a set of vertexes succeeding to the vertex v;
sv = {n ∈ V ; (v, n) ∈ E}

following conditions have to hold:

• The sets of vertexes P, S, C, O, A are pairwise
disjoint. The same condition holds for the sets of
edges E and R.

• There is at most one edge outgoing of and
incoming to each node except connectors;
∀v ∈ {V \ C} : (|pv| ≤ 1) ∧ (|sv| ≤ 1)

• Logical connectors have at least one incoming and
at least one outgoing edge. We distinguish exactly
two types of connectors – splitters and joiners.
We thus define two disjoint subsets of the set of
connectors as: C = T ∪ J , where T ∩ J = ∅.
Now the following corollaries hold:

– splitters – connectors that have exactly one
incoming edge and at least two outgoing
edges; ∀t ∈ T : (|pt| = 1) ∧ (|st| > 1)

– joiners – connectors that have at least
two incoming arc-edges and exactly one
outgoing arc-edge; ∀j ∈ J : (|pj | > 1) ∧
(|sj | = 1)

This definition of process is quite universal. It is based
on EPC language definition [19] that is widely used
in business process modelling. However, it is extended
in order to cover other specific languages as well,
specifically GLIF, that we use to formalize medical
guidelines. We use three control entities (processes,
states and connectors) that forms the control flow, and
two auxiliary entities (agents, objects) that describe
processes in more detail. Note, that in definition of
relations (the set R), we allow the connections between
different roles as well. This corresponds to definition of
organizational hierarchy in a team using roles (e.g. Jane
is a nurse and she also is a general employee).

Now, let us define the enhancements for a general
process language identified in [18], in order to be able
to properly simulate them using a multi-agent system.

Definition 2: We say, that D′ = (P, S,C,E,O,A,R)
is an enhanced process diagram, when for each p ∈ P
hold:

• Opi
= {o ∈ O; (o, p) ∈ R} is a set of input

objects of the process. Following properties of
each input object have to be specified:

optional – relation that represents whether
this object is necessary for executing the process
or not

utilization – float number representing the
amount of usage of the input object in order to
use it in several processes at the same time

PhD Conference ’08 21 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

• Opo
= {o ∈ O; (p, o) ∈ R} is a set of output

objects of the process. If an output object is not
also an input object, the process creates a new
object in the environment.

• Ap = {a ∈ A; (a, p) ∈ R} is a set of roles of
executing agents. Following properties have to be
specified for each role:

optional – a relation that represents whether
this agent is necessary for executing the process
or not

utilization – a float number representing the
amount of agent’s utilization in order to enable the
possibility of multi-tasking of agents

replace – a relation that represents whether
agent should be replaced by another agent
possesing this role when it interrupts the
execution of this process, or not

• location – an optional characteristic represented
by one of the input objects. As we are running
the simulation in a certain environment, there can
be a need for executing each process at precise
location (e.g. an examination should be executed
in the appropriate room of hospital that can be
modeled as a virtual world for the visualization
of the whole simulation).

• priority – an integer number representing the
priority of the process

• transition function – a description of the course
of the activity as such. Let Xi be the domains
of changing parameters of output objects of the
process. Then we say, that

fp
Opi

: IN �−→ (X1, X2, . . . , Xm)

is a transition function of the process that for each
timestep (a natural number) returns the actual
values for each changing parameters of the output
objects.

These enhancements are mostly natural and
correctly specify input and output objects with their
characteristics, or participating agents. Note, that we
allow cooperation of several agents on a single process
(| Ap |≥ 1), and we introduce multi-tasking of agents
as well.

We explain the definition of the transition function, that
represents the course of the process. We use a concept
of mathematical functions that can be defined for each
output effect of a single process separately, meaning we
are modeling several courses of changes in time – one

for each output parameter (e.g. the state of a patient
examination request can change during an execution
of a single process from “new” through “verified”
to “prepared”). Thanks to using general mathematical
functions we can determine the precise state of all output
effects at any time and we are able to apply partial results
into a virtual world when an interruption of the process
occurs. Because all of the described functions have only
one input variable – discrete time – we can transform the
set of functions as a single multidimensional transition
function of the process. Finally, according to a real-
life practice, we expect the real course of the function
during the simulation to depend on the actual state
of environment and input objects (e.g. if we have
some of the optional input objects we need less time
to accomplish a tas). Hence the transition function is
parametrized by these aspects.

4. Multi-agent System for a Process Simulation

In previous section we defined the enhanced processes
nad now let us define a multi-agent system (MAS),
that simulates them. Firstly we present an existing
MAS architecture, which was proved usefull as
prototype implementation in [18], following by several
enhancements that we want to implement in our
current approach in order to improve the course of the
simulation as such.

Figure 1: The architecture of the MAS simulating enhanced
processes.

The organizational scheme, shown in Figure 1, represent
a multi-agent system that can simulate processes
captured in a formalism for enhanced processes. We
differentiate several types of agents, but there are three
main groups. The first one is an agent representing
the environment in which the simulation proceeds.
Secondly, there are executing agents that correspond
with the modeled hospital staff (e.g. physicians) that
act within the environment. Finally, we identify three
types of auxiliary agents (control, coordinating and
role agents) which help to organize executing agents
in case of more complicated scenarios. Communication
of agents uses the blackboard architecture, where every

PhD Conference ’08 22 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

agent is able to read and write facts (e.g. activation
of specific processes for an execution agent, etc.) at
the common blackboard. As the decision mechanism
for the execution agents, the hierarchical reactive plans
were used, as they are easy to automatically generate
from process diagrams and they can define reasonably
complex behavior of an agent.

Let us now describe the functioning of the system.
For auxiliary agents, we present their behavior in the
pseudocode, that for brevity handles with only one
instance of process diagrams in the system. In the
implementation, however, several instances of the same
process diagram can be active. Firstly, we focus on
a simple scenario – simulation of a single process.
An executing agent reads from the blackboard a set
of currently allowed actions (they are allowed entirely
based on progress in process diagrams), it autonomously
chooses one of them on the basis of its internal rules,
priority of the processes, the ability to satisfy the
input conditions, and commits itself to execute it. It
asks the transition function of the process, what is the
expected finish time of this instance of the activity (as
it can depend on the actual values of input objects
parameters), and after the specified time it applies the
target values of the effects of the activity as provided by
the transition function and marks the activity as finished
at the blackboard. However, during the execution of the
activity, the agent can suspend its work (e.g. because it
needs to accomplish a task with higher priority). At the
time of the occurrence of this suspension, the agent asks
the transition function for actual values of all effects and
reflects the partial changes in the environment.

Algorithm 1 Rules for the control agent
1: if ∃p ∈ P : finished(CoordAgent, p) then
2: choose processes P ′ ⊆ P subsequent to p

according to the process rules
3: if P ′ �= ∅ then
4: remove(finished(CoordAgent, p))
5: for all p′ ∈ P ′ do
6: store(active(CoordAgent, p′))
7: end for
8: end if
9: end if

Described scenario was the simplest one, however in
more advanced cases, the three auxiliary agent types
are used. The control agent is the one who controls
the correct order of the process execution according
to the process diagrams and sets the set of currently
allowed activities. We can demonstrate its behavior
using pseudocode shown in Algorithm 1. Note, that

movement in the process chain in line 2 can contain
several steps or possibly splitting or joining the flow
using a connector.

In the case of cooperation of several agents in a process
execution, the coordinating agent takes responsibility
for notifying the correct subordinate agents (lines 1–4),
it selects which agent is so called master agent (i.e. the
one, that actually modifies objects used in the process;
lines 5–6), and monitors the progress of the execution
(lines 8–27). Coordination agent is also necessary in the
case of an interruption, when it chooses one of the other
participating agents to be the master agent (lines 16–25):

Algorithm 2 Rules for the coordinating agent
1: if ∃p ∈ P : (active(CoordAgent, p) ∧

(¬∃a ∈ Ap,∃p
′ ∈ P : ¬optional(a, p) ∧

active(a, p′) ∧ (priority(p′) > priority(p))))
then

2: for all a ∈ Ap do
3: store(active(a, p))
4: end for
5: choose one a ∈ Ap

6: store(master(a, p))
7: end if
8: for all p ∈ P do
9: if (∃a ∈ Ap) : (active(a, p) ∧master(a, p) ∧
¬working(a, p)) then

10: if finished(a, p) then
11: remove(finished(a, p))
12: for all a′ ∈ Ap do
13: remove(active(a′, p))
14: end for
15: store(finished(CoordAgent, p))
16: else if interrupted(a, p) then
17: if ¬optional(a, p) then
18: for all a′ ∈ Ap do
19: remove(active(a′, p))
20: end for
21: else
22: choose one a′ ∈ {e ∈ {Ap \ a} :

working(e, p)}
23: store(master(a′, p))
24: end if
25: end if
26: end if
27: end for

Finally, we describe the role agents. We are using
the concept of roles, hence the role agent reads the
set of currently active processes for the given role
(set by the coordinating agent, line 1) and activates
them for selected executing agent (lines 2–4). When

PhD Conference ’08 23 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

an interruption occurs and the suspended agent should
be replaced, a role agent is responsible for notifying
another executing agent possessing the same role (lines
11–14).

Algorithm 3 Rules for a role agent
Input: a is this role agent; Exa is a set of executing

agents that posses this role
1: if (∃p ∈ P) : active(a, p) ∧ ¬working(a, p) then
2: choose one e ∈ {c; c ∈ Exa ∧

(¬∃p′ ∈ P : working(c, p′) ∧
(priority(p′) > priority(p)))}

3: remove(interrupted(a, p))
4: store({active(e, p)), deleg(a, e, p), working(a, p)})
5: end if
6: for all p ∈ P do
7: if ∃e ∈ Exa : deleg(a, e, p) ∧ ¬working(e, p)

then
8: if finished(e, p) then
9: remove({active(a, p), deleg(a, e, p)})

10: store(finished(a, p))
11: else if ¬finished(e, p)∧replace(a, p) then
12: remove({active(e, p), deleg(a, e, p)})
13: choose one e′ ∈ {c; c ∈ Exa \ {e} ∧

(¬∃p′ ∈ P : working(c, p′) ∧
(priority(p′) > priority(p)))}

14: store({active(e′, p), deleg(a, e′, p)})
15: else
16: remove(working(a, p))
17: store(interrupted(a, p))
18: end if
19: else if working(a, p) ∧ ¬active(a, p) then
20: for all e ∈ Exa : deleg(a, e, p) ∧

active(e, p) do
21: remove({active(e, p), deleg(a, e, p)})
22: end for
23: end if
24: end for

4.1. Transforming Algorithm

Let us now describe how the set of rules for an executing
agent is automatically generated and how its action-
selection mechanism works.

As we have already stated, we are using the reactive
architecture for execution agents, hence each goal of
the plan is represented by a fuzzy if-then rule. For each
process the executing agent can participate in, one rule is
automatically generated. These rules are for each agent
ordered by the descending priority of the activities and
they create the first level of hierarchical architecture
of the agent. The second layer is created by several
sets of rules, where each set is related to one first-level

rule. This second-level set of rules represents several
partial activities that are necessary to execute according
to the conventions in the environment (e.g. transporting
movable objects to the location of the execution of the
process), and one rule for executing the simulation of
the activity as such (modeled by a transition function as
described in Section 3). Except the last one, the nature
of these rules depends on the conventions that hold in
the virtual world and therefore cannot be generalized.

Figure 2: A hierarchy of reactive plans of each executing
agent

The condition of a first-level rule is created as a
conjunction of all constrains related to properties of
input objects and agents (i.e. correct values of their
utilization (whether they can execute this activity)
and possibly other attributes, such as the state of an
patient etc.), and activation of an appropriate process.
Moreover, if an input object or a participant is not
mandatory, related conditions do not need to hold in
order to fire the rule.

4.2. Improved Architecture of the MAS

The architecture presented in previous section can
successfully simulate modeled processes and as such
can suit our intention to create an expert critiquing
system based on the simulation of clinical processes
and formalized medical guidelines. However, several
issues can be improved in previous approach. First of
all, the control and coordination of execution agents
using specialized auxiliary agents together with a
blackboard architecture is quite stiff and it partially
limits the autonomy of executing agents. Moreover, in
order to enhance executing agents with planning or
advanced architectures, much more organization-related
communication would be needed.

Therefore we propose a new architecture that, according
to our experiences gained during implementation
and testing the previous one, should emphasize
more the positive concepts of agents paradigm and
enable implementation of further improvements and
functionality, such as planning and better executing
agents coordination. Currently, we do not change the

PhD Conference ’08 24 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

reactive architecture of the executing agents as there is
not known correct interpretation of common knowledge
in form of processes for more deliberative agents. We
argue that processes have stronger conceptual meaning
than a plan library for an agents, as not only an agent
knows what actions it needs to execute, but also what
actions other agents should execute and how their
actions would affect the state of the environment. This
remains an open problem which we want to address in
further research.

Figure 3: The improved architecture of the MAS simulating
enhanced processes.

The schema of the new architecture is shown in
Figure 3. Both control and coordinating agent were
replaced by a set of agents – for each of modeled
process one process agent is automatically generated.
Each of them is responsible for executing one type of
activity (possibly several instances of one process) and
the duties of removed auxiliary agents are distributed
within this set. Note that in the new architectural
schema, the blackboard is no longer used. The simplified
organizational concept enables the possibility of usage
the direct messaging as well as a standard concept of the
Contract-Net Protocol (CNP) [20].

The pseudocode of a process agent is shown in
Algorithm 4 and it presents how a it acts in the
simulation. Note that the pseudocode is reduced
(several lines regarding the responses to rejections are
omitted). We can see, that agent keeps to the CNP
and each process agent, when notified (lines 2–6),
finds appropriate role agents (lines 25–26 and 11–15),
monitors the progress of the master agent in case of
cooperation, and passes the information of the success to
the next process agent(lines 16–24). Other agents, role
and executing, are acting in the same way, except the
changes in the communication.

Let us point out the advantages, that these modifications
can bring. The key change is the shift from
the blackboard architecture to the direct messaging
within agent community together with using standard
protocols. At the cost of increasing the overall number

of agents we simplify the communication within agents
(compare the organizational communication issues in
control and coordinating agent with process agents).
Moreover, we expect easier integration of planning that
can be added as further communication within process
and role agents (e.g. one process agent knows, what the
subsequent processes are, hence it can notify appropriate
agents in advance and negotiate executing some of the
auxiliary actions (see the second-level rules in Section
4.1) to save time).

Algorithm 4 Rules for a process agent
Input: p is a process assigned to this agent; Ip is the set

of currently active instances of p; mi master agent
of the process for i ∈ Ip; Xi is a set of returned
proposals for i ∈ Ip asdasd

1: for all msg ∈ IncMsgQueue do
2: if msg is activation of i then
3: Ip = Ip ∪ i
4: mi = ∅
5: i is new
6: Xi = ∅
7: else if msg is proposal for i then
8: Xi = Xi ∪msg
9: end if

10: end for
11: if CFPTimeOut ∧Xp �= ∅ then
12: choose one agent, mi, from Xi

13: sendAcceptProposal(i,mi)
14: i is started
15: end if
16: for all i ∈ Ip do
17: if i is finished then
18: Ip = Ip \ i
19: for all p ∈ (sp ∩ P) do
20: sendActivation(success(i), a)
21: end for
22: else if i is interrupted ∧{Ap \mi} �= ∅ then
23: Xi = ∅
24: sendProposal(i, Ap)
25: else if i is new then
26: sendProposal(i, Ap)
27: end if
28: end for

5. Future Work

So far we discussed processes, problems related to
their simulation, and proposed a solution based on a
multi-agent system. Now we present the vision of the
critiquing expert system which can profit from these
methods.

PhD Conference ’08 25 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

The critiquing system runs in the background of the
standard applications of HIS and controls the inserted
data about a patient. From these data values it tries
to recognize a medical guideline that physician is
following and furthermore recognize the state of the
patient. After a successfull matching, it further predicts
the future progress of possible patient’s treatment with
respect to the guidelines and database of existing cases
in the facility. This prediction follows the next steps in
guidelines (note, that patient can have several diseases
hence we need to take all of them into consideration) and
tries to simulate the future actions of the physician and
in case of missing current data value (e.g. a result from
an examination that patient have not undergone yet) the
approximation using similar patients from the database
is made. Also, this prediction would be probabilistic,
hence multiple branches of the guidelines would be
evaluated. Therefore, in case of for example omitting an
optional examination, physician can be alerted by the
system that similar patients had results that negatively
affect their further progress. Finally, the simultaneous
work with several guidelines for different diseases can
bring attention of the physician that treatment of a
disease she/he is focused on can conflict with another
treatment that this patient is going through.

In this system, we want to combine several existing
techniques. For a guideline recognition we want to
use ideas from existing plan recognition techniques
(such as using Bayesian network), and for guideline
simulation we want to apply the approach described
in this paper. However, the advantage of usage of
agents for a guideline simulation purpose (and the
whole system as such) is not so evident. We argue
that focusing on distributed artificial intelligence can
simplify the implementation and also the adaptivity of
the system (e.g. learning of the specialized process
agents). Finally, in the future a system designed on such
general principles could also be integrated into more
advanced HIS based on processes, which could help to
plan and organize work in a hospital facility with a close
relation to specific patients’ treatment.

6. Conclusions

In this paper we presented an approach to an agent-
based simulation of processes in an environment and
described its possible utilization in medical care –
specifically in the development of an critiquing expert
system that would use formalized medical guidelines as
a knowledge base. We formally defined processes and
their enhancement which helped us to closely describe
the functioning of the multi-agent system that simulates
the processes and finally, we presented our vision of
application of this approach in medicine.

Because such a direct usage of processes to control
a multi-agent system has not been till now a not
very explored area, there are several open issues:
further improvement of the architecture of the MAS,
implementation of planning and learning, or using more
deliberative decision mechanisms for executing agents.
In the following work we want to address some of
them and prove the usefulness of this method by
implementation of the working critiquing system that
would help the physician with their work.

References

[1] R. Lenz and M. Reichert, “It support for healthcare
processes - premises, challenges, perspectives,”
Data Knowl. Eng., vol. 61, no. 1, pp. 39–58, 2007.

[2] X. Song, B. Hwong, G. Matos, A. Rudorfer,
C. Nelson, M. Han, and A. Girenkov,
“Understanding requirements for computer-
aided healthcare workflows: experiences and
challenges,” in ICSE ’06: Proceedings of the 28th
international conference on Software engineering,
(New York, NY, USA), pp. 930–934, ACM, 2006.

[3] A. Kumar, B. Smith, M. Pisanelli, A. Gangemi,
and M. Stefanelli, “Clinical guidelines as plans:
An ontological theory,” Methods of Information in
Medicine, vol. 2, 2006.

[4] A. G. Ellrodt, L. Conner, M. Riedinger, and
S. Weingarten, “Measuring and Improving
Physician Compliance with Clinical Practice
Guidelines: A Controlled Interventional Trial,”
Ann Intern Med, vol. 122, no. 4, pp. 277–282,
1995.

[5] J. Cartwright, S. de Sylva, M. Glasgow, R. Rivard,
and J. Whiting, “Inaccessible information is
useless information: addressing the knowledge
gap,” J Med Pract Management, vol. 18, pp. 36–
41, 2002.

[6] P. A. de Clercq, J. A. Blom, H. H. M. Korsten, and
A. Hasman, “Approaches for creating computer-
interpretable guidelines that facilitate decision
support.,” Artificial Intelligence in Medicine,
vol. 31, pp. 1–27, 2004.

[7] Y. Shahar, S. Miksch, and P. Johnson, “The
asgaard project: a task-specific framework for the
application and critiquing of time-oriented clinical
guidelines.,” Artificial Intelligence in Medicine,
vol. 14, pp. 29–51, 1998.

[8] S. Tu and M. Musen, “A flexible approach to
guideline modeling,” Proc AMIA Symp., pp. 420–
424, 1999.

PhD Conference ’08 26 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

Branislav Bošanský Agent-based Simulation of Processes in Medicine

[9] M. Peleg, A. Boxwala, and O. Ogunyemi,
“Glif3: The evolution of a guideline representation
format.,” Proc AMIA Annu Fall Symp., pp. 645–
649, 2000.

[10] J. Fox, N. Johns, A. Rahmanzadeh, and
R. Thomson, “Proforma: A method and language
for specifying clinical guidelines and protocols,”
in Amsterdam, 1996.

[11] L. Dazzi, C. Fassino, R. Saracco, S. Quaglini, and
M. Stefanelli, “A patient workflow management
system built on guidelines.,” Proc AMIA Annu Fall
Symp, pp. 146–150, 1997.

[12] A. W. Scheer and M. Nüttgens, “ARIS architecture
and reference models for business process
management,” in Bus. Proc. Management, Models,
Techniques, and Empirical Studies, (London, UK),
pp. 376–389, Springer-Verlag, 2000.

[13] M. Sierhuis, Modeling and Simulating Work
Practice. PhD thesis, University of Amsterdam,
2001.

[14] N. R. Jennings, P. Faratin, T. J. Norman,
P. O’Brien, and B. Odgers, “Autonomous agents
for business process management,” Int. Journal
of Applied Artificial Intelligence, vol. 14, no. 2,
pp. 145–189, 2000.

[15] A. Moreno, A. Valls, and M. Marı́n, “Multi-agent
simulation of work teams,” in Multi-Agent Systems
and Applications III: 3rd Int. CEEMAS, (Prague,
Czech Republic), June 16-18 2003.

[16] M. P. Singh and M. N. Huhns, “Multiagent systems
for workflow,” Int. Journal of Intelligent Syst.
in Accounting, Finance and Management, vol. 8,
pp. 105–117, 1999.

[17] C. de Snoo, “Modelling planning processes with
talmod,” Master’s thesis, University of Groningen,
2005.

[18] B. Bosansky, “A virtual company simulation by
means of autonomous agents,” Master’s thesis,
Charles University in Prague, 2007.

[19] A. Finkelstein, J. Kramer, B. Nuseibeh,
L. Finkelstein, and M. Goedicke, “Viewpoints: A
framework for integrating multiple perspectives
in system development,” Int. Journal of Software
Eng. and Knowledge Engineering, vol. 2, no. 1,
pp. 31–57, 1992.

[20] R. G. Smith, “The contract net protocol: high-
level communication and control in a distributed
problem solver,” pp. 357–366, 1988.

PhD Conference ’08 27 ICS Prague

Institucionální repozitář AV ČR http://hdl.handle.net/11104/0206451

