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Abstract:

We describe a not-a-priori-exponential algorithm for solving the system —e < Ax < e, ||z||; > 1.
This system, despite its apparent simplicity, can be considered the basic NP-complete problem
of interval computations.?
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2Above: logo of interval computations and related areas (depiction of the solution set of the system
2, 4]z1 + [-2,1]z2 = [-2,2], [-1,2]z1 + [2,4]z2 = [-2,2] (Barth and Nuding [1])).



1 Introduction

In this paper we describe an algorithm for solving the system of inequalities

—e< Ax <e, (1.1)
zfl1 > 1, (1.2)
where A € R ¢ = (1,1,...,1)T € R™ and ||z|; = Y, |#;| = eT|z|, which can also be

written in the equivalent “shorthand” form

[Az| <, lzfh

v
—

(1.3)

The choice of the system may seem surprising: why just this system, and why such a specific
form (using e and 1)7 There are three reasons for this formulation.

First, in [2], Theorem 2.3 it was proved that the problem of checking solvability of the sys-
tem (1.1), (1.2) is NP-complete for nonnegative symmetric positive definite rational matrices,
and this result was further used there for proving NP-hardness or (co-)NP-completeness of
nine other problems (see Theorems 2.12, 2.15, 2.18, 2.21, 2.30, 2.33, 2.38, 3.15 and 3.17 in
[2]), thus having demonstrated that it is an ideal tool for establishing complexity results for
problems with interval data. This is why this problem was called “the basic NP-complete
problem of interval computations” in [4].

Second, it turns out that one of the basic NP-complete problems termed as such by Garey
and Johnson [3] can be transformed to our problem.

And third — and this the topic of the present paper — there exists a not-a-priori-exponential
algorithm for solving (1.1)), (1.2) which, in turn, yields a not-a-priori-exponential algorithm
for solving one of the basic NP-hard problems mentioned in the previous paragraph; formu-
lation of the latter algorithm will possibly appear elsewhere.

The algorithm for solving (1.1), (I.2), which in a finite number of steps either finds a
solution to (I.1), (1.2) or proves its nonexistence, is listed in the form of several intercon-
nected MATLAB-like functions in the last Section [4. The preceding two sections bring the
theoretical background and some examples.

2 Description

In order that the algorithm, whose description stretches over several pages, could be pre-
sented as a whole and not intertwined with the text, it is given in the last Section 4.

Theorem 1. For each square matriz A the algorithm basintnpprob (Fig. [/.1) in a
finite, but not-a-priori-exponential number of steps either finds a solution x of the system
(1.1), (1.2) (the case of x # []), or proves that no such a solution ezists (the case of x = []).

Proof. As proved in [5], the algorithm singreg (Fig. 14.2)), when applied to the interval
matrix [A — eel, A + ee?] (Fig. 4.1, lines (06)-(07)) in a finite, but not-a-priori-exponential
number of steps either yields a singular matrix S satisfying |A—S| < ee’ (the case of S # []),
or states that such a singular matrix S does not exist (the case of S = []).



In the first case, taking an arbitrary x # 0 satisfying Sx = 0 (which exists because S is

singular), we have

|[Az| = (A~ S)z| <A~ S|lz| < ee”|z| = |lz]|1e

so that for 2/ = x/||z||; we have |Az'| < e and ||2'||; = 1, which means that 2’ solves (1.3)

(Fig. [4.1] lines (09)-(10)).

In the second case there does not exist a singular matrix S satisfying |A — S| < ee?. We
shall prove that in this case the system (1.3) has no solution. Suppose to the contrary that

(L.3) has a solution x. Then

Az| < e < ella] = ee"a,

so that the interval matrix [A — ee, A + ee’] is singular, i.e., there exists a singular matrix
S satisfying |A — S| < ee”, a contradiction (Fig. [4.1, line (08)).

3 Examples

|

In this section we give two examples with 100 x 100 matrices. In the first one a solution is
found, whereas the second one has no solution.

>> tic, rand(’state’,1); n=100; A=rand(n,n); x=basintnpprob(A);
>> x’, min(ones(n,1)-abs(A*x)), norm(x,1), toc

ans =
Columns 1 through 10

-0.0293 -0.0154 -0.0091 0.0138 0.0099

Columns 11 through 20
0.0074 -0.0204 -0.0157 0.0054
Columns 21 through 30

-0.0023 0.0111 0.0045 -0.0043
Columns 31 through 40

-0.0067 0.0135 0.0097 0.0004
Columns 41 through 50
0.0009 -0.0148 -0.0051 0.0008
Columns 51 through 60
0.0103 0.0101 0.0036 0.0028
Columns 61 through 70

-0.0035 -0.0065 0.0161 0.0094
Columns 71 through 80
0.0046 -0.0094 -0.0128 0.0062
Columns 81 through 90
0.0225 -0.0145 -0.0092 -0.0110
Columns 91 through 100

-0.0168 0.0108 0.0026 0.0143

ans =
0.9981
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ans =
1.0000
Elapsed time is 0.804711 seconds.

>> tic, rand(’state’,1); n=100; A=10000*rand(n,n); x=basintnpprob(A);
>> x’, min(ones(n,1)-abs(A*x)), norm(x,1), toc

X =
(]

ans =
(]

ans =
(]

Elapsed time is 0.407147 seconds.

4 The algorithm

(01)  function z = basintnpprob (A)

(02) % BASic INTerval NP PROBlem.

(03) % x #[]: = solves —e < Az <ee, ||z|; > 1.

(04) % x=[]: —e< Az <e, ||z|i > 1 has no solution.
(05) n =size(A,1); e = ones(n,1);

(06) A =[A—eel, A+ eel];

(07) S =singreg (A);

(08) if S=][], z =[]; return, end

(09) find an x # 0 satisfying Sz = 0;

(10) 2=/l

Figure 4.1: An algorithm for solving the basic interval NP-complete problem.



(01) function S = singreg (A)

(02) % S #[]: S is a singular matrix in A.

(03) % S =[]: no singular matrix in A exists.
(04) S =1[];n=size(A,1);e=(1,...,)T € R
(05) if A, is singular, S = A; return, end

(06) R=A.';D=AlR|

(07) if Dkk = max; Djj > 1

(08) T = Re;

(09) fori=1:n

(10) if (Alz])i > 0, 3 = (Ac2)i/(Alz])i; else y; = 1; end
(11) ifx; >0, z=1;else z, = —1; end
(12) end

(13) S =A.—-T,AT,; return

(14) end

(15) if (D) < 1, return, end

(16) b=e;

(17) 2= Rb; v = miny |2;

(18) fori=1:n

(19) forj=1:n

(20) ¥ =x— 2bjR.j;

(21) if miny, |2} | > v, v = ming |z} |; © = 2’; bj = —b;; end
(22) end

(23) end

(24)

[\]
= W

[x,S] = intervalhull (A, [b,b]);

Figure 4.2: An algorithm for finding a singular matrix in an interval matrix.



(01) function [x,S] = intervalhull (A, b)
(02) % Computes either the interval hull x
(03) % of the solution set of Ax = b,

(04) % or a singular matrix S € A.

(05)  x=[]; §=1[];

(06) if A, is singular, S = A.; return, end
(07)  w.=Atb,; 2z =sgn(z.); o = 26 T = 25
(08) Z={:} D=0

(09) while Z # 0

(10) select z € Z; Z =7 —{z}; D=DU{z};
(11) [Q:, S] = qzmatrix (A, 2);

(12) if S # [], x = []; return, end

(13) [Q—., S] = gzmatrix (A, —z);

(14) if S # [], x = []; return, end

(16) z, = Q-zb. — |Q—.[0;

(17) ifz, <7,

(18) z =min(z,z,); T = max(T, 7,);
(19) forj=1:n

(20) 2=z 2y =2

(21) if ((z,);(7.); <0and 2 ¢ ZU D)
(22) Z=ZU{};

(23) end

(24) end

(25) end

(26) end

(27)  x=[z,7;

(01) function [Q)., S] = gzmatrix (A, z)
(02) % Computes either a solution @,

(03) % of the equation QA. — |Q|AT, =1,
(04) % or a singular matrix S € A.

(05) fori=1:n

(06) [z, 5] = absvaleqn (AL, —~T,AT ¢;);
(07) if S#[],5=57;,Q, =[]; return
(08) end

(09) (Q2)ie = a’;

(10) end

1) S=1I

Figure 4.3: An algorithm for computing the interval hull.
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) function [z, S] = absvaleqn (4, B, b)

) % Finds either a solution z to Az + Blz| = b, or
) % a singular matrix S satisfying |S — A| < |B|.
) z=[];S=[];i=0;r=0€R™ X =0¢eR"™",
) if A is singular, S = A; return, end

) z=sgn(A'D);

) if A+ BT, is singular, S = A + BT,; return, end
) x=(A+ BT,) b

) C=—(A+ BT, 'B;

) while zjz; < 0 for some j

) =1+ 1;

) k = min{j | zjz; < 0};

) if 14 22.Ck <0

) S = A+ B(T, + (1/Ci)egef);

) x = []; return

) end

) if ((k <n and r; > maxr;) or (k =n and r, > 0))
) r =1 — Xeok; b

) forj=1:n

) if (|B|Jel); > 0, 55 = (Az);/(|Bllal); else y; = 1; end
) end

) z = sgn(z);

) S:A_Ty‘B|Tz;

) x = []; return

) end

) rE = 1;

) KXok = ;

) 2k = —2k;

) o = 22;/(1 = 22, Cp);

) =2+ arpCok;

) C = C+ alCerCle;

) end

Figure 4.4: An algorithm for solving an absolute value equation.
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