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What is graded fuzzy logic?

Petr Hájek

December 5, 2011

This short remark wants to be a contribution to the discussion on various
possibilities of defining graded fuzzy logic. The reader is assumed to know
basics of the mathematical fuzzy logic as developed in [4], in particular the basic
(propositional and predicate) mathematical fuzzy logic BL and BL∀. Several
definitions of graded notions related to (t-norm based) fuzzy logic are analyzed
in papers by Běhounek et al., some of them being cited below. For example, in
[1] the formula

∧
α,β(Tαβ ≡ Tβα) (with ≡ being fuzzy equivalence) is shown as

a definition of degree of commutativity of T . The present approach is different
from Běhounek’s notions; several things are proven but a serious discussion
of the offered notion is not contained here. Any comments on this are very
welcome.

Let &,→, 0 be interpreted in the usual way using a continuous t-norm, let
c be an element of the real interval (0, 1]. For a, b, c ∈ [0, 1] let
(a →c b) ≡ (c → (a → b)),
(a ≡c b) ≡ (c → (a ≡ b)).

Investigate connectives &c, →c, 0c satisfying
(a&cb) ≡ c → (a&b), (a →c b) ≡ c → (a → b), z ≡ 0c ≡c z ≡ 0.

Lemma. The following formulas are valid:
(1) ((a ≡c b)&(u ≡c v)) → ((a&u) ≡c2

(b&v))
(2) ((a ≡c1

b)&(b ≡ c2d)) → (a ≡c1.c2
d)

(3) (x&c0c) ≡c3
0c

(4) (1 →c y) ≡c y

(5) (x&c(x →c y)) →c2
y

Proof.
(1) ((c → (a ≡ b))&(c → (u → v))) → (c2 → ((a&u) ≡ (b&v)))
(2) Similar proof.
(3) (x&c0c) ≡c (x&0c) ≡c (x&0) ≡1 0 ≡c 0c

(4) easy;
(5) (x&c(x →c y)) ≡c (x&(x →c y)) ≡c (x&(x → y)) ≡1 y

Now let us analyze the axioms from [4] 2.2.4.
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Lemma. The following formulas are valid:
(A1c) (x →c y) →c ((y →c z) →c (x →c z))
(A2c) (x&cy) →c x
(A3c) (x&cy) →c (y&cx)
(A4c) (x&c(x →c y)) →c (y&c(y →c x))
(A51c) (x →c (y →c z)) →c (((x&cy) →c z)
(A6c) ((x →c y) →c z) →c (((y →c x) →c z) →c z)
(A7c) 0c →c x

Proof.
(A1c)
(x → y) → ((y → z) → (x → z))
(x → y) → ((c → (y → z) → (c → (x → z))
(c → (x → y)) → (c → ((c → (y → z) → (c → (x → z)))
(x →c y) → ((y →c z) →c (x →c z))
c → [(x →c y) → (((y →c z) →c (x →c z)))]
(x →c y) →c ((y →c z) →c (x →c z))

(A2c)
(x&cy) ≡c (x&y), (x&y) →1 x, thus
c → ((x&cy) → x)
(x&cy) →c x

(A3c)
(c → (x&y)) → (c → (y&x))
(x&cy) → (y&cx)
(x&cy) →c (y&cx)

(A4c)
cx is an abbreviation of c&x.
Each line implies the next one.
x&c(x →c y))
c → (x&(x →c y))
c → (x&(c → (x → y)))
c2 → (cx&(cx → y))
c2 → ((y → cx)&y)
c → (c → ((y → cx)&y))
c → (((y →c cx)&y))
((y →c cx)&cy)
((y →c x)&cy)

(A51c)
[x →c (y →c z)] → [c → (x → (y → (c → z))] →
→ [c → (c → (x&y) → z)] → [c → (c → (x&y) → (c → z))] →
→ [c → ((x&cy →c z), thus
(x →c (y →c z)) →c (((x&cy) →c z)).
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(A6c)
((x → y) → z) → (((y → x) → z) → z)
((x → y) → z) →c (((y → x) → z) →c z)
((x →c y) →c z) →c (((y →c x) →c z) →c z)

(A7c)
c → (c → 0) → x, thus 0c →c x.

Lemma (modus ponens.) φc a (φ → ψ)c implies c → ψc.
Proof. (φ → ψ)c is φc →c ψc, thus c → (φc → ψc).

Corollary. If BL proves φ then for some n BLc proves cn → φc.
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[4] Hájek P.: Metamathematics of fuzzy logic. Kluwer 1998

3


