národní
úložiště
šedé
literatury

What is graded fuzzy logic?

Hájek, Petr
2012
Dostupný z http://www.nusl.cz/ntk/nusl-81044

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 11.07.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

What is graded fuzzy logic?

Petr Hájek

Technical report No. 1148

January 2012

Institute of Computer Science Academy of Sciences of the Czech Republic

What is graded fuzzy logic?

Petr Hájek ${ }^{1}$

Technical report No. 1148

January 2012

Abstract:

The note presents a new definition of graded fuzzy logic, different from that of Běhounek et al. Some few properties of graded fuzzy logic (in our new sense) are proven.

Keywords:
graded theories, mathematical fuzzy logic

[^0]
What is graded fuzzy logic?

Petr Hájek

December 5, 2011

This short remark wants to be a contribution to the discussion on various possibilities of defining graded fuzzy logic. The reader is assumed to know basics of the mathematical fuzzy logic as developed in [4], in particular the basic (propositional and predicate) mathematical fuzzy logic $B L$ and $B L \forall$. Several definitions of graded notions related to (t-norm based) fuzzy logic are analyzed in papers by Běhounek et al., some of them being cited below. For example, in [1] the formula $\bigwedge_{\alpha, \beta}(T \alpha \beta \equiv T \beta \alpha)$ (with \equiv being fuzzy equivalence) is shown as a definition of degree of commutativity of T. The present approach is different from Běhounek's notions; several things are proven but a serious discussion of the offered notion is not contained here. Any comments on this are very welcome.

Let $\&, \rightarrow, 0$ be interpreted in the usual way using a continuous t-norm, let c be an element of the real interval (0,1$]$. For $a, b, c \in[0,1]$ let
$\left(a \rightarrow^{c} b\right) \equiv(c \rightarrow(a \rightarrow b))$,
$\left(a \equiv^{c} b\right) \equiv(c \rightarrow(a \equiv b))$.
Investigate connectives $\&^{c}, \rightarrow^{c}, 0^{c}$ satisfying
$\left(a \&^{c} b\right) \equiv c \rightarrow(a \& b),\left(a \rightarrow^{c} b\right) \equiv c \rightarrow(a \rightarrow b), z \equiv 0^{c} \equiv^{c} z \equiv 0$.
Lemma. The following formulas are valid:
(1) $\left(\left(a \equiv^{c} b\right) \&\left(u \equiv^{c} v\right)\right) \rightarrow\left((a \& u) \equiv^{c^{2}}(b \& v)\right)$
(2) $\left(\left(a \equiv \equiv^{c^{1}} b\right) \&\left(b \equiv c^{2} d\right)\right) \rightarrow\left(a \equiv^{c^{1} \cdot c^{2}} d\right)$
(3) $\left(x \&^{c} 0^{c}\right) \equiv{ }^{c^{3}} 0^{c}$
(4) $\left(1 \rightarrow^{c} y\right) \equiv^{c} y$
(5) $\left(x \& \&^{c}\left(x \rightarrow^{c} y\right)\right) \rightarrow^{c^{2}} y$

Proof.
(1) $((c \rightarrow(a \equiv b)) \&(c \rightarrow(u \rightarrow v))) \rightarrow\left(c^{2} \rightarrow((a \& u) \equiv(b \& v))\right)$
(2) Similar proof.
(3) $\left(x \&{ }^{c} 0^{c}\right) \equiv^{c}\left(x \& 0^{c}\right) \equiv^{c}(x \& 0) \equiv^{1} 0 \equiv^{c} 0^{c}$
(4) easy;
(5) $\left(x \&{ }^{c}\left(x \rightarrow^{c} y\right)\right) \equiv^{c}\left(x \&\left(x \rightarrow^{c} y\right)\right) \equiv^{c}(x \&(x \rightarrow y)) \equiv^{1} y$

Now let us analyze the axioms from [4] 2.2.4.

Lemma. The following formulas are valid:
$\left(A 1^{c}\right)\left(x \rightarrow^{c} y\right) \rightarrow^{c}\left(\left(y \rightarrow^{c} z\right) \rightarrow^{c}\left(x \rightarrow^{c} z\right)\right)$
$\left(A 2^{c}\right)\left(x \&^{c} y\right) \rightarrow^{c} x$
$\left(A 3^{c}\right)\left(x \&^{c} y\right) \rightarrow^{c}\left(y \&^{c} x\right)$
$\left(A 4^{c}\right)\left(x \&^{c}\left(x \rightarrow^{c} y\right)\right) \rightarrow^{c}\left(y \&^{c}\left(y \rightarrow^{c} x\right)\right)$
$\left(A 51^{c}\right)\left(x \rightarrow^{c}\left(y \rightarrow^{c} z\right)\right) \rightarrow^{c}\left(\left(\left(x \&^{c} y\right) \rightarrow^{c} z\right)\right.$
$\left(A 6^{c}\right)\left(\left(x \rightarrow^{c} y\right) \rightarrow^{c} z\right) \rightarrow^{c}\left(\left(\left(y \rightarrow^{c} x\right) \rightarrow^{c} z\right) \rightarrow^{c} z\right)$
$\left(A 7^{c}\right) 0^{c} \rightarrow^{c} x$
Proof.
($A 1^{c}$)
$(x \rightarrow y) \rightarrow((y \rightarrow z) \rightarrow(x \rightarrow z))$
$(x \rightarrow y) \rightarrow((c \rightarrow(y \rightarrow z) \rightarrow(c \rightarrow(x \rightarrow z))$
$(c \rightarrow(x \rightarrow y)) \rightarrow(c \rightarrow((c \rightarrow(y \rightarrow z) \rightarrow(c \rightarrow(x \rightarrow z)))$
$\left(x \rightarrow^{c} y\right) \rightarrow\left(\left(y \rightarrow^{c} z\right) \rightarrow^{c}\left(x \rightarrow^{c} z\right)\right)$
$c \rightarrow\left[\left(x \rightarrow^{c} y\right) \rightarrow\left(\left(\left(y \rightarrow^{c} z\right) \rightarrow^{c}\left(x \rightarrow^{c} z\right)\right)\right)\right]$
$\left(x \rightarrow^{c} y\right) \rightarrow^{c}\left(\left(y \rightarrow^{c} z\right) \rightarrow^{c}\left(x \rightarrow^{c} z\right)\right)$
($A 2^{c}$)
$\left(x \&^{c} y\right) \equiv^{c}(x \& y),(x \& y) \rightarrow^{1} x$, thus
$c \rightarrow\left(\left(x \&^{c} y\right) \rightarrow x\right)$
$\left(x \not \&^{c} y\right) \rightarrow^{c} x$
$\left(A 3^{c}\right)$
$(c \rightarrow(x \& y)) \rightarrow(c \rightarrow(y \& x))$
$\left(x \&^{c} y\right) \rightarrow\left(y \&^{c} x\right)$
$\left(x \&^{c} y\right) \rightarrow^{c}\left(y \&^{c} x\right)$
($A 4^{c}$)
$c x$ is an abbreviation of $c \& x$.
Each line implies the next one.
$\left.x \&^{c}\left(x \rightarrow^{c} y\right)\right)$
$c \rightarrow\left(x \&\left(x \rightarrow^{c} y\right)\right)$
$c \rightarrow(x \&(c \rightarrow(x \rightarrow y)))$
$c^{2} \rightarrow(c x \&(c x \rightarrow y))$
$c^{2} \rightarrow((y \rightarrow c x) \& y)$
$c \rightarrow(c \rightarrow((y \rightarrow c x) \& y))$
$c \rightarrow\left(\left(\left(y \rightarrow^{c} c x\right) \& y\right)\right)$
$\left(\left(y \rightarrow^{c} c x\right) \&^{c} y\right)$
$\left(\left(y \rightarrow^{c} x\right) \&^{c} y\right)$
(A51 $\left.{ }^{c}\right)$
$\left[x \rightarrow^{c}\left(y \rightarrow^{c} z\right)\right] \rightarrow[c \rightarrow(x \rightarrow(y \rightarrow(c \rightarrow z))] \rightarrow$
$\rightarrow[c \rightarrow(c \rightarrow(x \& y) \rightarrow z)] \rightarrow[c \rightarrow(c \rightarrow(x \& y) \rightarrow(c \rightarrow z))] \rightarrow$
$\rightarrow\left[c \rightarrow\left(\left(x \&^{c} y \rightarrow^{c} z\right)\right.\right.$, thus
$\left(x \rightarrow^{c}\left(y \rightarrow^{c} z\right)\right) \rightarrow^{c}\left(\left(\left(x \&^{c} y\right) \rightarrow^{c} z\right)\right)$.
$\left(A 6^{c}\right)$
$((x \rightarrow y) \rightarrow z) \rightarrow(((y \rightarrow x) \rightarrow z) \rightarrow z)$
$((x \rightarrow y) \rightarrow z) \rightarrow^{c}\left(((y \rightarrow x) \rightarrow z) \rightarrow^{c} z\right)$
$\left(\left(x \rightarrow^{c} y\right) \rightarrow^{c} z\right) \rightarrow^{c}\left(\left(\left(y \rightarrow^{c} x\right) \rightarrow^{c} z\right) \rightarrow^{c} z\right)$
$\left(A 7^{c}\right)$
$c \rightarrow(c \rightarrow 0) \rightarrow x$, thus $0^{c} \rightarrow^{c} x$.
Lemma (modus ponens.) ϕ^{c} a $(\phi \rightarrow \psi)^{c}$ implies $c \rightarrow \psi^{c}$.
Proof. $(\phi \rightarrow \psi)^{c}$ is $\phi^{c} \rightarrow^{c} \psi^{c}$, thus $c \rightarrow\left(\phi^{c} \rightarrow \psi^{c}\right)$.
Corollary. If $B L$ proves ϕ then for some $n B L^{c}$ proves $c^{n} \rightarrow \phi^{c}$.

References

[1] Běhounek L., Bodenhofer U., Cintula P., Saminger-Platz S., Sarkoci P.: Graded properties of t-norms. In: Abstracts of 10th Conference of Fuzzy Set Theory and Applications p. 30. February 2010.
[2] Běhounek L., Bodenhofer U., Cintula P., Saminger-Platz S., Sarkoci P.: Graded dominnce and related graded properties. Submitted to Fuzzy Sets and Systems.
[3] Běhounek L., Bodenhofer U., Cintula P., Saminger-Platz S., Sarkoci P.: On a graded notion of t-norm and dominance. In Proc ISMVL'10
[4] Hájek P.: Metamathematics of fuzzy logic. Kluwer 1998

[^0]: ${ }^{1}$ Institute of Computer Science, Academy of Sciences of the Czech Republic, Pod Vodárenskou věží 2, 182 07, Prague 8, Czech Republic, hajek@cs.cas.cz

