národní
úložiště
šedé
literatury

A not-a-priori-exponential necessary and sufficient condition for regularity of interval matrices

Hooshyarbakhsh, V.
2012
Dostupný z http://www.nusl.cz/ntk/nusl-80997

Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 27.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science Academy of Sciences of the Czech Republic

A not-a-priori-exponential necessary and sufficient condition for regularity of interval matrices

Vahideh Hooshyarbakhsh, Raena Farhadsefat and Jiri Rohn

Technical report No. V-1147
02.01.2012

Institute of Computer Science Academy of Sciences of the Czech Republic

A not-a-priori-exponential necessary and sufficient condition for regularity of interval matrices

Vahideh Hooshyarbakhsh, ${ }^{[1]}$ Raena Farhadsefat ${ }^{[2]}$ and Jiri Rohn ${ }^{3}$

Technical report No. V-1147
02.01.2012

Abstract:
We describe a not-a-priori-exponential necessary and sufficient condition for regularity of interval matrices which is an easy consequence of an earlier result on interval linear equations.

Keywords:
Interval matrix, regularity, necessary and sufficient condition.4]

[^0]Checking regularity of interval matrices is a known NP-hard problem. Forty necessary and sufficient regularity conditions are summed up in [2]; all of them are exponential because they explicitly or implicitly contain the quantifier "for each $z \in\{-1,1\}^{n}$ ". The condition given below is, to these authors' knowledge, the first ever published not-a-priori-exponential regularity condition because instead of $\{-1,1\}^{n}$ it employs only a subset Z of it. Cardinality of the set Z varies with the data, but its minimal value is 1 . Notation used: e_{j} is the j th column of the $n \times n$ identity matrix, $e=(1,1, \ldots, 1)^{T} \in \mathbb{R}^{n}, \operatorname{diag}(z)$ is the $n \times n$ diagonal matrix with diagonal vector z and for an $x \in \mathbb{R}^{n}, \operatorname{sgn}(x)$ is defined by $(\operatorname{sgn}(x))_{i}=1$ if $x_{i} \geq 0$ and $(\operatorname{sgn}(x))_{i}=-1$ otherwise.

Theorem 1. An $n \times n$ interval matrix $\boldsymbol{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ is regular if and only if A_{c} is nonsingular and there exists a subset Z of $\{-1,1\}^{n}$ having the following properties:
(a) $\operatorname{sgn}\left(A_{c}^{-1} e\right) \in Z$,
(b) for each $z \in Z$ the inequalities

$$
\begin{align*}
\left(Q A_{c}-I\right) \operatorname{diag}(z) & \geq|Q| \Delta \tag{0.1}\\
\left(Q A_{c}-I\right) \operatorname{diag}(-z) & \geq|Q| \Delta \tag{0.2}
\end{align*}
$$

have matrix solutions Q_{z} and Q_{-z}, respectively,
(c) if $z \in Z, Q_{-z} e \leq Q_{z} e$, and $\left(Q_{-z} e\right)_{j}\left(Q_{z} e\right)_{j} \leq 0$ for some j, then $z-2 z_{j} e_{j} \in Z$.

Proof. "If": The assumptions (a)-(c) imply that the three assumptions of Theorem 3 in [3] are met for the system of interval linear equations $\boldsymbol{A} x=[e, e]$ whose solution set in virtue of the same theorem is bounded, hence \boldsymbol{A} is regular. "Only if": If \boldsymbol{A} is regular, then (a) and (c) are satisfied for $Z=\{-1,1\}^{n}$ and for each $z \in\{-1,1\}^{n}$ the equations

$$
\begin{aligned}
\left(Q A_{c}-I\right) \operatorname{diag}(z) & =|Q| \Delta \\
\left(Q A_{c}-I\right) \operatorname{diag}(-z) & =|Q| \Delta
\end{aligned}
$$

have (even unique) solutions, see [2].
Hence we can also formulate the theorem in the following way:
Theorem 2. An $n \times n$ interval matrix $\boldsymbol{A}=\left[A_{c}-\Delta, A_{c}+\Delta\right]$ is regular if and only if A_{c} is nonsingular and there exists a subset Z of $\{-1,1\}^{n}$ having the following properties:
(a) $\operatorname{sgn}\left(A_{c}^{-1} e\right) \in Z$,
(b) for each $z \in Z$ the equations

$$
\begin{align*}
\left(Q A_{c}-I\right) \operatorname{diag}(z) & =|Q| \Delta \tag{0.3}\\
\left(Q A_{c}-I\right) \operatorname{diag}(-z) & =|Q| \Delta \tag{0.4}
\end{align*}
$$

have matrix solutions Q_{z} and Q_{-z}, respectively,
(c) if $z \in Z, Q_{-z} e \leq Q_{z} e$, and $\left(Q_{-z} e\right)_{j}\left(Q_{z} e\right)_{j} \leq 0$ for some j, then $z-2 z_{j} e_{j} \in Z$.

Notice that if $z \in\{-1,1\}^{n}$, then $z-2 z_{j} e_{j} \in\{-1,1\}^{n}$ (in (c)), so that $Z \subseteq\{-1,1\}^{n}$; thus Z is defined recursively by (a) and (c). In practical computations, equations (0.3), (0.4) are solved instead of inequalities (0.1), (0.2) as it was done in the function qzmatrix, using the subfunction absvaleqn, in [4].

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125.
[2] J. Rohn, Forty necessary and sufficient conditions for regularity of interval matrices: A survey, Electronic Journal of Linear Algebra, 18 (2009), pp. 500-512. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp500512.pdf. 2
[3] J. Rohn, A general method for enclosing solutions of interval linear equations, Technical Report 1067, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, March 2010. http://uivtx.cs.cas.cz/~rohn/publist/genmeth.pdf. 2
[4] J. Rohn, An algorithm for computing the hull of the solution set of interval linear equations, Linear Algebra and Its Applications, 435 (2011), pp. 193-201. 2]

[^0]: ${ }^{1}$ Department of Applied Mathematics and Computer Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran, e-mail: vhoshiar@iauh.ac.ir.
 ${ }^{2}$ Young Researchers Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran, e-mail: rfarhad@iauh.ac.ir.
 ${ }^{3}$ Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic, e-mail: rohn@cs.cas.cz. This author's work was supported by the Institutional Research Plan AV0Z10300504.
 ${ }^{4}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]($ Barth and Nuding [1] $\left.)\right)$.

