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Abstract:

We describe an iterative method for solving absolute value equations. The usual spectral condi-
tion is replaced by assumption of existence of two matrices satisfying certain matrix inequality.
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1 Introduction

The absolute value equation
Ax + B|x| = b (1.1)

(where A,B ∈ Rn×n and b ∈ Rn) has been recently studied by several authors, cf. e.g.
Caccetta, Qu and Zhou [2], Hu and Huang [3], Karademir and Prokopyev [4], Mangasarian
[5], [6], Mangasarian and Meyer [7], Prokopyev [8], Rohn [9], [10], and Zhang and Wei [11].
Little attention was, however, dedicated so far to iterative methods for solving (1.1). In this
report we formulate such a method (Theorem 1) working under assumption of existence of
matrices M ≥ 0 and R satisfying the inequality

M(I − |I −RA| − |RB|) ≥ I (1.2)

which replaces the traditional spectral condition. This inequality is discussed in more detail
in Sections 4 and 5, and interval iterations are proposed in Section 3.

2 The method

The following theorem is the basic result of this report.

Theorem 1. Let M ≥ 0 and R satisfy (1.2). Then the sequence {xi}∞i=0 given by x0 = Rb
and

xi+1 = (I −RA)xi −RB|xi|+ Rb (i = 0, 1, . . .) (2.1)

converges to the unique solution x∗ of (1.1) and for each i ≥ 1 there holds

|x∗ − xi| ≤ (M − I)|xi − xi−1|. (2.2)

Proof. Let (1.2) have a solution M ≥ 0 and R. Denote

G = |I −RA|+ |RB|,

then G ≥ 0 and the condition (1.2) can be written as

I + MG ≤ M. (2.3)

Postmultiplying this inequality by G and adding I to both sides we obtain

I + G + MG2 ≤ I + MG ≤ M

and by induction
k∑

j=0

Gj + MGk+1 ≤ M

for k = 0, 1, 2, . . .. In view of nonnegativity of M , this shows that the nonnegative matrix
series

∑∞
j=0 Gj satisfies

∞∑

j=0

Gj ≤ M, (2.4)
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hence it is convergent, so that Gj → 0 and consequently

%(G) < 1. (2.5)

Now we have
I −RA ≤ |I −RA| ≤ G,

hence
%(I −RA) ≤ %(|I −RA|) ≤ %(G) < 1. (2.6)

Since %(I −RA) < 1, the matrix

RA = I − (I −RA) (2.7)

is nonsingular, which gives that both R and A are nonsingular.
Let i ≥ 1. Subtracting the equations

xi+1 = (I −RA)xi −RB|xi|+ Rb,

xi = (I −RA)xi−1 −RB|xi−1|+ Rb,

we get
|xi+1 − xi| ≤ |I −RA||xi − xi−1|+ |RB|||xi| − |xi−1|| ≤ G|xi − xi−1|

and for each m ≥ 1 by induction

|xi+m − xi| = |
m−1∑

j=0

(xi+j+1 − xi+j)| ≤
m−1∑

j=0

|xi+j+1 − xi+j | ≤
m−1∑

j=0

Gj+1|xi − xi−1|

≤ (
∞∑

j=0

Gj+1)|xi − xi−1| ≤ (M − I)|xi − xi−1| ≤ (M − I)Gi−1|x1 − x0|.

From the final inequality

|xi+m − xi| ≤ (M − I)Gi−1|x1 − x0|,

in view of the fact that Gi−1 → 0 as i →∞, we can see that the sequence {xi} is Cauchian,
thus convergent, xi → x∗. Taking the limit in (2.1) we get

x∗ = (I −RA)x∗ −RB|x∗|+ Rb

which gives
0 = R(Ax∗ + B|x∗| − b),

and employing the above-proved nonsingularity of R, we can see that x∗ is a solution of
(1.1). The estimation (2.2) follows from the above-established inequality

|xi+m − xi| ≤ (M − I)|xi − xi−1|

by taking m →∞.
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To prove uniqueness, assume that (1.1) has a solution x′. From the equations

Ax∗ + B|x∗| = b,

Ax′ + B|x′| = b

written as

x∗ = (I −RA)x∗ −RB|x∗|+ Rb,

x′ = (I −RA)x′ −RB|x′|+ Rb

we obtain
|x∗ − x′| ≤ G|x∗ − x′|,

hence
(I −G)|x∗ − x′| ≤ 0

and by (2.3),
|x∗ − x′| ≤ M(I −G)|x∗ − x′| ≤ 0,

which shows that x′ = x∗. This proves uniqueness.

Employing the approach used in the last part of the proof, we can derive an estimation of
the distance of the solution from an arbitrary point in Rn.

Theorem 2. Let M ≥ 0 and R satisfy (1.2). Then for the unique solution x∗ of (1.1)
there holds

|x∗ − x| ≤ M |R(Ax + B|x| − b)| (2.8)

for each x ∈ Rn.

Proof. Let (1.2) have a solution M ≥ 0 and R. Denote

G = |I −RA|+ |RB|.
Then G ≥ 0 and the condition (1.2) can be written as

I ≤ M(I −G). (2.9)

Now take an arbitrary x ∈ Rn and put

Ax + B|x| − b = r,

then premultiplying this equality by R and adding x to both sides we obtain

x = (I −RA)x−RB|x|+ Rb + Rr.

Since x∗ is the unique solution of (1.1) we have

Ax∗ + B|x∗| = b,

which similarly implies that

x∗ = (I −RA)x∗ −RB|x∗|+ Rb.
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Hence
|x∗ − x| ≤ |I −RA||x∗ − x|+ |RB||x∗ − x|+ |Rr| = G|x∗ − x|+ |Rr|.

Using relation 2.9 we have

|x∗ − x| ≤ M(I −G)|x∗ − x| ≤ M |Rr|.
Consequently

|x∗ − x| ≤ M |R(Ax + B|x| − b)|
which was to be proved.

The result can also be formulated in an explicit interval form.

Theorem 3. Under assumptions and notation of Theorem 2 we have

x∗ ∈ [x−M |R(Ax + B|x| − b)|, x + M |R(Ax + B|x| − b)|] (2.10)

for each x ∈ Rn.

Proof. Clearly, the relation (2.8) can be equivalently rewritten as

x−M |R(Ax + B|x| − b)| ≤ x∗ ≤ x + M |R(Ax + B|x| − b)|,
which is (2.10).

3 Interval iterations

When generating the sequence (2.1) on computer, instead of the true sequence

x0, x1, . . . , xi, . . .

we compute a floating-point sequence

x̃0, x̃1, . . . , x̃i, . . .

for which the estimation (2.2) no longer remains in force. To overcome this difficulty, we
may resort to interval iterations. For each i ≥ 0, using outward rounding (e.g. in INTLAB),
first compute verified enclosures

x̃i −M |R(Ax̃i + B|x̃i| − b)| ∈ [yi, yi],

x̃i + M |R(Ax̃i + B|x̃i| − b)| ∈ [zi, zi],

where yi, yi, zi, zi are floating-point vectors; then by Theorem 3 we have the verified enclosure

x∗ ∈ [yi, zi]

for each i = 0, 1, 2, . . .. Now define
x0 = [y0, z0]

and
xi+1 = [yi+1, zi+1] ∩ xi (i = 0, 1, 2, . . .),

then
x0 ⊇ x1 ⊇ . . . ⊇ xi ⊇ . . . 3 x∗

so that we get a nested sequence of floating-point interval vectors each of whom is verified
to contain the solution x∗.
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4 The inequality (1.2)

Let us write the condition (1.2), as before, in the form

M(I −G) ≥ I, (4.1)

M ≥ 0, (4.2)

where
G = |I −RA|+ |RB|.

In this section we shall be interested in finding M and R satisfying (4.1), (4.2). Obviously,
such M and R do not exist always because their existence implies unique solvability of (1.1)
(Theorem 1). We show how M and R satisfying (4.1), (4.2) can be found.

Theorem 4. If (assuming both inverses to exist)

(I − |A−1B|)−1 ≥ 0,

then

R = A−1, (4.3)
M = (I − |A−1B|)−1 (4.4)

satisfy (4.1), (4.2).

Proof. Indeed, M ≥ 0 by assumption, and M(I−|I−RA|−|RB|) = M(I−|A−1B|) = I.

This gives us the clue: in practical computations choose R and M as the computed values
of (4.3), (4.4).

5 Condensed form of conditions (4.1), (4.2)

The two conditions (4.1), (4.2) can be merged into a single “condensed” condition

M ≥ I + |M |G. (5.1)

In fact, if (5.1) holds, then M ≥ 0 (because G ≥ 0), hence |M | = M and (5.1) turns into
(4.1). Conversely, if (4.1), (4.2) hold, then M = |M | and the condition (4.1), if written as
M ≥ I + MG, becomes (5.1).

This, of course, is only a technical trick, which, however, spares us of necessity of empha-
sizing nonnegativity of M whenever mentioning the condition (4.1).
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