národní
úložiště
šedé
literatury

An Iterative Method for Solving Absolute Value Equations
Hooshyarbakhsh, V.
2012
Dostupný z http://www.nusl.cz/ntk/nusl-80996
Dílo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národního úložiště šedé literatury (NUŠL).
Datum stažení: 30.04.2024
Další dokumenty můžete najít prostřednictvím vyhledávacího rozhraní nusl.cz .

Institute of Computer Science

 Academy of Sciences of the Czech Republic
An Iterative Method for Solving Absolute Value Equations

Vahideh Hooshyarbakhsh, Taher Lotfi, Raena Farhadsefat, and Jiri Rohn

Technical report No. V-1145
02.01.2012

[^0]e-mail:rohn@cs.cas.cz

An Iterative Method for Solving Absolute Value Equations

Vahideh Hooshyarbakhsh, ${ }^{1]}$ Taher Lotfi, ${ }^{[2]}$
Raena Farhadsefat, ${ }^{3}$ and Jiri Rohn ${ }^{41}$

Technical report No. V-1145
02.01.2012

Abstract:

We describe an iterative method for solving absolute value equations. The usual spectral condition is replaced by assumption of existence of two matrices satisfying certain matrix inequality.

Keywords:
Absolute value equation, iterative method. ${ }^{5}$

[^1]
1 Introduction

The absolute value equation

$$
\begin{equation*}
A x+B|x|=b \tag{1.1}
\end{equation*}
$$

(where $A, B \in \mathbb{R}^{n \times n}$ and $b \in \mathbb{R}^{n}$) has been recently studied by several authors, cf. e.g. Caccetta, Qu and Zhou [2], Hu and Huang [3], Karademir and Prokopyev [4], Mangasarian [5], [6], Mangasarian and Meyer [7], Prokopyev [8, Rohn [9], [10], and Zhang and Wei [11]. Little attention was, however, dedicated so far to iterative methods for solving (1.1). In this report we formulate such a method (Theorem 1) working under assumption of existence of matrices $M \geq 0$ and R satisfying the inequality

$$
\begin{equation*}
M(I-|I-R A|-|R B|) \geq I \tag{1.2}
\end{equation*}
$$

which replaces the traditional spectral condition. This inequality is discussed in more detail in Sections 4 and 5, and interval iterations are proposed in Section 3.

2 The method

The following theorem is the basic result of this report.
Theorem 1. Let $M \geq 0$ and R satisfy (1.2). Then the sequence $\left\{x^{i}\right\}_{i=0}^{\infty}$ given by $x^{0}=R b$ and

$$
\begin{equation*}
x^{i+1}=(I-R A) x^{i}-R B\left|x^{i}\right|+R b \quad(i=0,1, \ldots) \tag{2.1}
\end{equation*}
$$

converges to the unique solution x^{*} of (1.1) and for each $i \geq 1$ there holds

$$
\begin{equation*}
\left|x^{*}-x^{i}\right| \leq(M-I)\left|x^{i}-x^{i-1}\right| . \tag{2.2}
\end{equation*}
$$

Proof. Let (1.2) have a solution $M \geq 0$ and R. Denote

$$
G=|I-R A|+|R B|,
$$

then $G \geq 0$ and the condition (1.2) can be written as

$$
\begin{equation*}
I+M G \leq M \tag{2.3}
\end{equation*}
$$

Postmultiplying this inequality by G and adding I to both sides we obtain

$$
I+G+M G^{2} \leq I+M G \leq M
$$

and by induction

$$
\sum_{j=0}^{k} G^{j}+M G^{k+1} \leq M
$$

for $k=0,1,2, \ldots$. In view of nonnegativity of M, this shows that the nonnegative matrix series $\sum_{j=0}^{\infty} G^{j}$ satisfies

$$
\begin{equation*}
\sum_{j=0}^{\infty} G^{j} \leq M \tag{2.4}
\end{equation*}
$$

hence it is convergent, so that $G^{j} \rightarrow 0$ and consequently

$$
\begin{equation*}
\varrho(G)<1 \tag{2.5}
\end{equation*}
$$

Now we have

$$
I-R A \leq|I-R A| \leq G
$$

hence

$$
\begin{equation*}
\varrho(I-R A) \leq \varrho(|I-R A|) \leq \varrho(G)<1 \tag{2.6}
\end{equation*}
$$

Since $\varrho(I-R A)<1$, the matrix

$$
\begin{equation*}
R A=I-(I-R A) \tag{2.7}
\end{equation*}
$$

is nonsingular, which gives that both R and A are nonsingular.
Let $i \geq 1$. Subtracting the equations

$$
\begin{aligned}
x^{i+1} & =(I-R A) x^{i}-R B\left|x^{i}\right|+R b \\
x^{i} & =(I-R A) x^{i-1}-R B\left|x^{i-1}\right|+R b
\end{aligned}
$$

we get

$$
\left|x^{i+1}-x^{i}\right| \leq|I-R A|\left|x^{i}-x^{i-1}\right|+|R B|| | x^{i}\left|-\left|x^{i-1}\right|\right| \leq G\left|x^{i}-x^{i-1}\right|
$$

and for each $m \geq 1$ by induction

$$
\begin{aligned}
\left|x^{i+m}-x^{i}\right| & =\left|\sum_{j=0}^{m-1}\left(x^{i+j+1}-x^{i+j}\right)\right| \leq \sum_{j=0}^{m-1}\left|x^{i+j+1}-x^{i+j}\right| \leq \sum_{j=0}^{m-1} G^{j+1}\left|x^{i}-x^{i-1}\right| \\
& \leq\left(\sum_{j=0}^{\infty} G^{j+1}\right)\left|x^{i}-x^{i-1}\right| \leq(M-I)\left|x^{i}-x^{i-1}\right| \leq(M-I) G^{i-1}\left|x^{1}-x^{0}\right|
\end{aligned}
$$

From the final inequality

$$
\left|x^{i+m}-x^{i}\right| \leq(M-I) G^{i-1}\left|x^{1}-x^{0}\right|
$$

in view of the fact that $G^{i-1} \rightarrow 0$ as $i \rightarrow \infty$, we can see that the sequence $\left\{x^{i}\right\}$ is Cauchian, thus convergent, $x^{i} \rightarrow x^{*}$. Taking the limit in (2.1) we get

$$
x^{*}=(I-R A) x^{*}-R B\left|x^{*}\right|+R b
$$

which gives

$$
0=R\left(A x^{*}+B\left|x^{*}\right|-b\right)
$$

and employing the above-proved nonsingularity of R, we can see that x^{*} is a solution of (1.1). The estimation ($\overline{(2.2)}$) follows from the above-established inequality

$$
\left|x^{i+m}-x^{i}\right| \leq(M-I)\left|x^{i}-x^{i-1}\right|
$$

by taking $m \rightarrow \infty$.

To prove uniqueness, assume that (1.1) has a solution x^{\prime}. From the equations

$$
\begin{aligned}
A x^{*}+B\left|x^{*}\right| & =b \\
A x^{\prime}+B\left|x^{\prime}\right| & =b
\end{aligned}
$$

written as

$$
\begin{aligned}
x^{*} & =(I-R A) x^{*}-R B\left|x^{*}\right|+R b \\
x^{\prime} & =(I-R A) x^{\prime}-R B\left|x^{\prime}\right|+R b
\end{aligned}
$$

we obtain

$$
\left|x^{*}-x^{\prime}\right| \leq G\left|x^{*}-x^{\prime}\right|,
$$

hence

$$
(I-G)\left|x^{*}-x^{\prime}\right| \leq 0
$$

and by (2.3),

$$
\left|x^{*}-x^{\prime}\right| \leq M(I-G)\left|x^{*}-x^{\prime}\right| \leq 0
$$

which shows that $x^{\prime}=x^{*}$. This proves uniqueness.
Employing the approach used in the last part of the proof, we can derive an estimation of the distance of the solution from an arbitrary point in \mathbb{R}^{n}.

Theorem 2. Let $M \geq 0$ and R satisfy (1.2). Then for the unique solution x^{*} of (1.1) there holds

$$
\begin{equation*}
\left|x^{*}-x\right| \leq M|R(A x+B|x|-b)| \tag{2.8}
\end{equation*}
$$

for each $x \in \mathbb{R}^{n}$.
Proof. Let (1.2) have a solution $M \geq 0$ and R. Denote

$$
G=|I-R A|+|R B|
$$

Then $G \geq 0$ and the condition (1.2) can be written as

$$
\begin{equation*}
I \leq M(I-G) \tag{2.9}
\end{equation*}
$$

Now take an arbitrary $x \in \mathbb{R}^{n}$ and put

$$
A x+B|x|-b=r
$$

then premultiplying this equality by R and adding x to both sides we obtain

$$
x=(I-R A) x-R B|x|+R b+R r .
$$

Since x^{*} is the unique solution of (1.1) we have

$$
A x^{*}+B\left|x^{*}\right|=b
$$

which similarly implies that

$$
x^{*}=(I-R A) x^{*}-R B\left|x^{*}\right|+R b .
$$

Hence

$$
\left|x^{*}-x\right| \leq|I-R A|\left|x^{*}-x\right|+|R B|\left|x^{*}-x\right|+|R r|=G\left|x^{*}-x\right|+|R r| \text {. }
$$

Using relation 2.9 we have

$$
\left|x^{*}-x\right| \leq M(I-G)\left|x^{*}-x\right| \leq M|R r| .
$$

Consequently

$$
\left|x^{*}-x\right| \leq M|R(A x+B|x|-b)|
$$

which was to be proved.
The result can also be formulated in an explicit interval form.
Theorem 3. Under assumptions and notation of Theorem ${ }^{\text {R }}$ we have

$$
\begin{equation*}
x^{*} \in[x-M|R(A x+B|x|-b)|, x+M|R(A x+B|x|-b)|] \tag{2.10}
\end{equation*}
$$

for each $x \in \mathbb{R}^{n}$.
Proof. Clearly, the relation (2.8) can be equivalently rewritten as

$$
x-M|R(A x+B|x|-b)| \leq x^{*} \leq x+M|R(A x+B|x|-b)|,
$$

which is (2.10).

3 Interval iterations

When generating the sequence (2.1) on computer, instead of the true sequence

$$
x^{0}, x^{1}, \ldots, x^{i}, \ldots
$$

we compute a floating-point sequence

$$
\tilde{x}^{0}, \tilde{x}^{1}, \ldots, \tilde{x}^{i}, \ldots
$$

for which the estimation (2.2) no longer remains in force. To overcome this difficulty, we may resort to interval iterations. For each $i \geq 0$, using outward rounding (e.g. in INTLAB), first compute verified enclosures

$$
\begin{aligned}
& \tilde{x}^{i}-M\left|R\left(A \tilde{x}^{i}+B\left|\tilde{x}^{i}\right|-b\right)\right| \in\left[\underline{y}^{i}, \bar{y}^{i}\right], \\
& \tilde{x}^{i}+M\left|R\left(A \tilde{x}^{i}+B\left|\tilde{x}^{i}\right|-b\right)\right| \in\left[\underline{z}^{i}, \bar{z}^{i}\right],
\end{aligned}
$$

where $\underline{y}^{i}, \bar{y}^{i}, \underline{z}^{i}, \bar{z}^{i}$ are floating-point vectors; then by Theorem 3 we have the verified enclosure

$$
x^{*} \in\left[\underline{y}^{i}, \bar{z}^{i}\right]
$$

for each $i=0,1,2, \ldots$. Now define

$$
x^{0}=\left[\underline{y}^{0}, \bar{z}^{0}\right]
$$

and

$$
\boldsymbol{x}^{i+1}=\left[\underline{y}^{i+1}, \bar{z}^{i+1}\right] \cap \boldsymbol{x}^{i} \quad(i=0,1,2, \ldots),
$$

then

$$
\boldsymbol{x}^{0} \supseteq \boldsymbol{x}^{1} \supseteq \ldots \supseteq \boldsymbol{x}^{i} \supseteq \ldots \ni x^{*}
$$

so that we get a nested sequence of floating-point interval vectors each of whom is verified to contain the solution x^{*}.

4 The inequality (1.2)

Let us write the condition (1.2), as before, in the form

$$
\begin{gather*}
M(I-G) \geq I \tag{4.1}\\
M \geq 0 \tag{4.2}
\end{gather*}
$$

where

$$
G=|I-R A|+|R B| .
$$

In this section we shall be interested in finding M and R satisfying (4.1), (4.2). Obviously, such M and R do not exist always because their existence implies unique solvability of (1.1) (Theorem 1). We show how M and R satisfying (4.1), (4.2) can be found.

Theorem 4. If (assuming both inverses to exist)

$$
\left(I-\left|A^{-1} B\right|\right)^{-1} \geq 0
$$

then

$$
\begin{align*}
R & =A^{-1} \tag{4.3}\\
M & =\left(I-\left|A^{-1} B\right|\right)^{-1} \tag{4.4}
\end{align*}
$$

satisfy (4.1), (4.2).
Proof. Indeed, $M \geq 0$ by assumption, and $M(I-|I-R A|-|R B|)=M\left(I-\left|A^{-1} B\right|\right)=I$.
This gives us the clue: in practical computations choose R and M as the computed values of (4.3), (4.4).

5 Condensed form of conditions (4.1), (4.2)

The two conditions (4.1), (4.2) can be merged into a single "condensed" condition

$$
\begin{equation*}
M \geq I+|M| G \tag{5.1}
\end{equation*}
$$

In fact, if (5.1) holds, then $M \geq 0$ (because $G \geq 0$), hence $|M|=M$ and (5.1) turns into (4.1). Conversely, if (4.1), (4.2) hold, then $M=|M|$ and the condition (4.1), if written as $M \geq I+M G$, becomes (5.1).

This, of course, is only a technical trick, which, however, spares us of necessity of emphasizing nonnegativity of M whenever mentioning the condition (4.1).

Bibliography

[1] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing, 12 (1974), pp. 117-125. 1
[2] L. Caccetta, B. Qu, and G. Zhou, A globally and quadratically convergent method for absolute value equations, Comput. Optim. Appl., 48 (2011), pp. 45-58. 2
[3] S.-L. Hu and Z.-H. Huang, A note on absolute value equations, Optim. Lett., 4 (2010), pp. 417-424. 2
[4] S. Karademir and O. A. Prokopyev, A short note on solvability of systems of interval linear equations, Linear Multilinear Algebra, 59 (2011), pp. 707-710. [2
[5] O. Mangasarian, Absolute value equation solution via concave minimization, Optim. Lett., 1 (2007), pp. 3-8. 2]
[6] O. Mangasarian, A generalized Newton method for absolute value equations, Optim. Lett., 3 (2009), pp. 101-108.
[7] O. L. Mangasarian and R. R. Meyer, Absolute value equations, Linear Algebra Appl., 419 (2006), pp. 359-367. [2]
[8] O. Prokopyev, On equivalent reformulations for absolute value equations, Comput. Optim. Appl., 44 (2009), pp. 363-372. 2]
[9] J. Rohn, An algorithm for solving the absolute value equation, Electronic Journal of Linear Algebra, 18 (2009), pp. 589-599. http://www.math.technion.ac.il/iic/ela/ela-articles/articles/vol18_pp589599.pdf. 2
[10] J. Rohn, An algorithm for solving the absolute value equation: An improvement, Technical Report 1063, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, January 2010. http://uivtx.cs.cas.cz/~rohn/publist/absvaleqnreport.pdf. 22
[11] C. Zhang and Q. Wei, Global and finite convergence of a generalized Newton method for absolute value equations, J. Optim. Theory Appl., 143 (2009), pp. 391-403. 2

[^0]: Pod Vodárenskou věží 2, 18207 Prague 8, phone: +420 266051 111, fax: +420286585789 ,

[^1]: ${ }^{1}$ Department of Applied Mathematics and Computer Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran, e-mail: vhoshiar@iauh.ac.ir.
 ${ }^{2}$ Department of Applied Mathematics and Computer Sciences, Hamedan Branch, Islamic Azad University, Hamedan, Iran, e-mail: lotfi@iauh.ac.ir.
 ${ }^{3}$ Young Researchers Club, Hamedan Branch, Islamic Azad University, Hamedan, Iran, e-mail: rfarhad@iauh.ac.ir.
 ${ }^{4}$ Institute of Computer Science, Czech Academy of Sciences, Prague, Czech Republic, e-mail: rohn@cs.cas.cz. This author's work was supported by the Institutional Research Plan AV0Z10300504.
 ${ }^{5}$ Above: logo of interval computations and related areas (depiction of the solution set of the system $[2,4] x_{1}+[-2,1] x_{2}=[-2,2],[-1,2] x_{1}+[2,4] x_{2}=[-2,2]$ (Barth and Nuding [1])).

