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Běhounek, Libor
2011
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1 Introduction

This report summarizes and further elaborates the results of the previous papers and reports on the
topic: [5, 3, 4]. For the motivation of the investigation carried out in this report see the introductory
sections of [5, 3, 4]. For the general context of Fuzzy Class Theory and graded fuzzy mathematics see
esp. [6, 7].

2 Preliminaries

The general results of this paper are derived in the framework of higher-order fuzzy logic, also known
as Fuzzy Class Theory (FCT). FCT is an axiomatic theory of Zadeh’s notions of fuzzy set [18] and
fuzzy relation [19] in formal fuzzy logic (in the sense of [14]). For reference, a (slightly simplified)
definition of FCT is given below; for more details see the original paper [6] or the freely available
primer [8].

We shall use the variant of FCT over the logic MTL4 of all left-continuous t-norms [13], one of
the weakest fuzzy logics suitable for this type of graded fuzzy mathematics. We assume the reader’s
familiarity with the first-order logic MTL4; here we shall just briefly recall the standard semantics of
its connectives and quantifiers over the real unit interval [0, 1]:

& . . . any left-continuous t-norm ∗
→ . . . the residuum ⇒∗ of ∗, defined as x ⇒∗ y =df sup{z | z ∗ x ≤ y}
∧, ∨ . . . min, max
¬ . . . ¬x =df x ⇒∗ 0
↔ . . . bi-residuum: (x ⇒∗ y) ∧ (y ⇒∗ x)
4 . . . 4x = 1 if x = 1; 4x = 0 otherwise
∀,∃ . . . inf, sup

By means of this ‘dictionary’, the formal results formulated and proved in MTL4 can be translated
into the more common semantic notions: for instance, the defining formula of Definition 3.1,

Cng(u) ≡df (∀αβ)((α ↔ β) → (uα ↔ uβ)),

expresses the following semantic definition of the degree of the fuzzy property Cng for a unary fuzzy
connective u:

Cng(u) =
∧

α, β

((
(α ⇒∗ β) ∧ (β ⇒∗ α)

) ⇒∗
(
(u(α) ⇒∗ u(β)) ∧ (u(β) ⇒∗ u(α))

))
,

for any given left-continuous t-norm ∗. In this manner, all formulae encountered in this paper can
be understood as denoting the corresponding semantic facts about standard fuzzy sets and fuzzy
relations.

Recall further that since x ⇒∗ y equals 1 iff x ≤ y, theorems with implication as the principal
connective express the comparison of degrees. Thus, e.g., in the claim (R9) of Theorem 5.5 on page 17
below, the formula Com(c) ⇒ Sym(R c R−1) expresses the semantic fact that the degree of Com(c)
is less than or equal to the degree of Sym(R c R−1). (Notice that sometimes we use the sign ⇒ for
→ and ⇔ for ↔, by Convention 2.1 below.) Similarly theorems with ↔ as the principal connective
express the identity of degrees; so for example the claim (C1) of Theorem 3.2 on page 4 below,
MonCng(u) ⇔ Mon(u) ∧ Cng(u), expresses the fact that the degree of MonCng(u) equals the
minimum of the degrees of Mon(u) and Cng(u), for any left-continuous t-norm ∗. For more details
on the meaning of formulae in MTL4 and FCT see [7, 8].

Convention 2.1 For better readability of complex formulae, we shall alternatively use the comma (,)
for &; the symbol ⇒ for →; and ⇔ for ↔. The symbols ⇒ and ⇔ can be chained, with ϕ1 ⇒ ϕ2 ⇒
. . . ⇒ ϕn representing the formula (ϕ1 → ϕ2)&(ϕ2 → ϕ3)& . . .&(ϕn−1 → ϕn), and similarly for ⇔ .
The sign ≡ will indicate equivalence by definition. By convention, the symbols ⇒, ⇔, and ≡ will have
the lowest priority in formulae and the comma the second lowest priority. Of other symbols, → and
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↔ will have lower priority than other binary connectives, and quantifiers and unary connectives will
have the highest priority.

We shall write ϕn for ϕ& . . .&ϕ (n times). In atomic subformulae, the superscript can be attached
directly to the predicate, e.g., Com2(c) or c ≈3 d. Furthermore we shall employ the following defined
connectives that express the ordering and equality of truth degrees:

ϕ ≤ ψ ≡df 4(ϕ → ψ)
ϕ = ψ ≡df 4(ϕ ↔ ψ)

The priority of these connectives is the same as that of implication.

Fuzzy class theory FCT, or Henkin-style higher-order fuzzy logic MTL4, is an axiomatic theory
over multi-sorted first-order logic MTL4, with sorts of variables for:

• Atomic elements, denoted by lowercase letters x, y, . . .

• Fuzzy classes6 of atomic elements, denoted by uppercase letters A,B, . . .

• Fuzzy classes of fuzzy classes of atomic elements, denoted by calligraphic letters A,B, . . .

• Etc.; in general for fuzzy classes of the n-th order, written as X(n), Y (n), . . .

The primitive symbols of FCT are:

• The identity predicates = on each sort

• The membership predicates ∈ between successive sorts

• The symbols for tuples 〈x1, . . . , xk〉 of individuals x1, . . . , xk of any order and all arities k ∈ N
The formula x ∈ A and the term 〈x1, . . . , xk〉 may be abbreviated, respectively, as Ax and x1 . . . xk.
FCT has the following axioms, for all formulae ϕ and variables of any order:

• The logical axioms of multi-sorted first-order logic MTL4

• The identity axioms: x = x and x = y → (ϕ(x) ↔ ϕ(y))

• The tuple-identity axioms: 〈x1, . . . , xk〉 = 〈y1, . . . , yk〉 → xi = yi, for all k ∈ N and 1 ≤ i ≤ k

• The comprehension axioms: (∃A)(Ax = ϕ(x))

• The extensionality axioms: (∀x)(Ax = Bx) → A = B

The axioms for identity entail that the identity predicate = on each sort is crisp (while the mem-
bership predicate ∈ can in general be fuzzy). Notice that due to the logical axioms, theorems of FCT
need be proved by the rules of the logic MTL4 rather than classical logic.

The models of FCT are systems of fuzzy sets and fuzzy relations of all finite arities and orders
over a fixed crisp set X (the universe of discourse) that are closed under all FCT-definable operations
and whose membership degrees take values in any fixed MTL4-chain (standardly, the real unit inter-
val [0, 1] equipped with a left-continuous t-norm). All theorems of FCT are therefore valid for Zadeh’s
[0, 1]-valued fuzzy sets and fuzzy relations (of all finite arities and orders).

6For certain formal reasons, in FCT we use the term fuzzy class besides the more common fuzzy set (for details on
this distinction, irrelevant to the present paper, see, e.g., [2, Sect. 2.1]).
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Definition 2.2 In FCT, we introduce the following graded properties of and relations between fuzzy
classes:

A ⊆ B ≡df (∀x)(Ax → Bx) inclusion
A v B ≡df 4(A ⊆ B) crisp inclusion
A ≈ B ≡df (∀x)(Ax ↔ Bx) weak bi-inclusion
A u B ≡df (A ⊆ B) & (B ⊆ A) strong bi-inclusion
HgtA ≡df (∃x)Ax height
Plt A ≡df (∀x)Ax plinth

CrispA ≡df (∀x)4(Ax ∨ ¬Ax) crispness

Moreover, we define the following operations on fuzzy classes:

Akx1 . . . xk ≡df Ax1 & . . . & Axk Cartesian power

R−1xy ≡df Ryx converse relation

Finite fuzzy classes {a1/α1, . . . , an/αn} are defined as follows:

x ∈ {a1/α1, . . . , an/αn} ≡df ((x = a1) & α1) ∨ . . . ∨ ((x = an) & αn).

By convention, we can write just ai instead of ai/1 in the above notation (thus, e.g., {a} is the crisp
singleton of a).

In this paper we shall deal with fuzzy connectives, i.e., algebraic operations on truth degrees.
Even though truth degrees are not part of the primitive language of FCT, they can be represented
in the theory by subclasses of a crisp singleton. The details of the representation (for which see [9,
Sect. 3] and [1]) are not important for our present purposes; we shall thus simply assume that variables
α, β, . . . for truth values are at our disposal in FCT, and that the ordering of truth values and the
usual propositional connectives and the quantifiers ∀, ∃ are definable in FCT. The crisp class of the
internal truth values will be denoted by L.

The study of fuzzy connectives in the framework of FCT was initiated in [3, 4]. By n-ary fuzzy
connectives we understand n-ary operations on truth degrees i.e., crisp functions c : Ln → L. Being
functions into L, they can equivalently be regarded as fuzzy relations on Ln; i.e., c v Ln. Thus, e.g.,
fuzzy inclusion c ⊆ d of binary fuzzy connectives c,d will be understood as inclusion of fuzzy relations
c,d : L2 → L, i.e., c ⊆ d ≡ (∀α)(cαβ → dαβ), rather than as inclusion of crisp functions. Similarly,
the converse fuzzy connective is defined as c−1αβ ≡ cβα (cf. Definition 2.2).

Convention 2.3 We shall always use Greek letters for truth values, the letters u,v,w for unary
connectives, and the letters a,b, c, . . . for binary connectives. Infix notation α c β will usually be
employed for binary connectives instead of prefix notation cαβ. In formulae, infix binary connectives
will by convention have the same priority as &: thus, e.g., ¬α c β → γ will mean ((¬α) c β) → γ.

3 Graded properties of unary and binary connectives

Many crisp classes of truth-value operators (e.g., t-norms, uninorms, copulas, negations, etc.) can
be defined by formulae of FCT. The apparatus, however, enables also partial satisfaction of such
conditions. In the following, we therefore give several fuzzy conditions on truth-value operators and
use them as graded preconditions of theorems which need not be satisfied to the full degree. This
yields a completely new graded theory of truth-value operators and allows non-trivial generalizations of
well-known theorems on such operators, including their consequences for properties of fuzzy relations.

Here we present the basics of the theory needed for the main topic of this paper, the graded
notion of dominance relation. For a further elaboration of the theory of graded properties of fuzzy
connectives, including illustrative examples, see [1].
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3.1 Graded properties of unary connectives

Graded properties of unary connectives can be obtained by ‘fuzzification’ (consisting in replacement
of the crisp comparison ≤, = by the graded operations →,↔ in defining formulae) of usual crisp
properties of functions: this method usually yields meaningful graded properties, and therefore will
in this paper be employed systematically to obtain graded versions of well-known crisp properties of
fuzzy connectives.

Definition 3.1 In FCT, we define the following graded properties of a unary connective u v L:

Mon(u) ≡df (∀αβ)((α ≤ β) → (uα → uβ)) Graded monotonicity
Cng(u) ≡df (∀αβ)((α ↔ β) → (uα ↔ uβ)) Graded congruence w.r.t. ↔

Analogously to monotonicity we could define the property of antitonicity, defined as (∀αβ)((α ≤
β) → (uβ → uα)). We shall not study it in this paper due to its little relevance to the properties of
dominance. For more details about this property see [1].

The graded property Cng(u) gives, roughly speaking, the degree to which u yields close values for
close arguments, where closeness is evaluated in the sense of ↔. In particular, in standard ÃLukasiewicz
models of FCT, where ↔ corresponds to the Euclidean distance, the property 4Cng(u) expresses the
1-Lipschitz property of u. If u is regarded as a fuzzy class u v L rather than a crisp unary operation
u : L → L, then Cng(u) expresses extensionality (see Definition 2.2) of u w.r.t. ↔. The property
will play an important role in many graded theorems on fuzzy connectives, as it denotes the largest
guaranteed degree of intersubstitutivity of uα and uβ for close (in the sense of ↔) arguments α and β.

In models of FCT, the crisp condition

4Mon(u) ≡ (∀αβ)((α ≤ β) → (uα ≤ uβ))

expresses the usual crisp condition of monotonicity of u w.r.t. the ordering ≤ on L. Its graded version
Mon(u) arises from replacing the second occurrences of ≤ by →. Notice that replacing both ≤’s in
4Mon(u) by → would not yield a graded generalization of monotonicity as the resulting notion

MonCng(u) ≡df (∀αβ)((α → β) → (uα → uβ))

does not coincide with crisp monotony when fully true, but rather are stronger (see the following
Theorem 3.2). However, it turns out that this notion is superfluous and can be characterized in terms
of Mon and Cng, by the following theorem.

Theorem 3.2 FCT proves the following graded theorem:

(C1) MonCng(u) ⇔ Mon(u) ∧ Cng(u)

Proof: From left to right: First observe that trivially MonCng(u) → Mon(u), as 4(α → β) → (α →
β). Second, from MonCng(u) we get both (α ↔ β) ⇒ (α → β) ⇒ (uα → uβ) and (α ↔ β) ⇒ (β →
α) ⇒ (uβ → uα). Thus (α ↔ β) ⇒ (uα → uβ) ∧ (uβ → uα) ⇔ (uα ↔ uβ), and the rest is simple.

For the converse direction we take the crisp cases α ≤ β and β ≤ α, which are exhaustive due to the
prelinearity axiom of MTL. For α ≤ β we obtain (α → β) ⇒4(α → β) ⇒ (uα → uβ) by Mon(u). For
β ≤ α we get (α → β) ⇒ (α ↔ β) ⇒ (uα → uβ) by Cng(u). Thus Mon(u) ∧Cng(u) → MonCng(u).

¤

Example 3.3 To demonstrate the difference between these properties consider standard ÃLukasiewicz
models of FCT and connectives u1(α) = min(α, 1 − α) and u2(α) = min(2α, 1). Clearly Cng(u1) =
Mon(u2) = 1 (i.e., u1 is fully 1-Lipschitz and u2 is fully monotone), but we have only Cng(u2) =
Mon(u1) = MonCng(u1,2) = 1

2 .

The following easy theorems show how the properties of unary connectives transfer to connectives
which are close in the sense of ≈ or u. Notice that the results of Theorem 3.4 follow from a general
metatheorem [11, Th. 3.5]. Since, however, the proof of the metatheorem is omitted in [11], and also
in order for the present paper to be self-contained, we give direct proofs of the particular claims here.
(The same remark applies also to further theorems on preservation under ≈ or u in this paper.)
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Theorem 3.4 FCT proves:

(C2) Cng(u),u ≈2 v ⇒ Cng(v)

(C3) Mon(u),u u v ⇒ Mon(v)

Proof:

(C2) α ↔ β implies uα ↔ uβ by Cng(u), whence vα ↔ vβ by u ≈2 v (as uα ↔ vα by u ≈ v and
uβ ↔ vβ by u ≈ v).

(C3) α ≤ β implies uα → uβ by Mon(u); vα → uα by v ⊆ u; and uβ → vβ by u ⊆ v. The
transitivity of implication then completes the proof. ¤

3.2 Graded congruence and monotonicity of binary connectives

We now turn to binary connectives. First we shall discuss the properties of congruence and mono-
tonicity, which are analogous to the unary case. We define a separate variant for each argument as
well as for both arguments at once:

Definition 3.5 In FCT, we define the left-argument properties of congruence and monotonicity for
binary connectives as follows:

LCng(c) ≡df (∀αβγ)((α ↔ β) → (α c γ ↔ β c γ))
RCng(c) ≡df (∀αβγ)((α ↔ β) → (γ c α ↔ γ c β))

Cng(c) ≡df (∀αβγδ)((α ↔ β) & (γ ↔ δ) → (α c γ ↔ β c δ))
LMon(c) ≡df (∀αβγ)((α ≤ β) → (α c γ → β c γ))
RMon(c) ≡df (∀αβγ)((α ≤ β) → (γ c α → γ c β))

Mon(c) ≡df (∀αβγδ)((α ≤ β) & (γ ≤ δ) → (α c γ → β c δ))

For convenience, we also define the abbreviation LRCng(c) ≡df LCng(c) & RCng(c), and similarly
for monotonicity.

Let us first study the interplay of just defined variants of the notions of congruence and mono-
tonicity:

Theorem 3.6 FCT proves:

(C4) Mon2(c) ⇒ LRMon(c) ⇒ Mon(c) ⇒ LMon(c) ∧ RMon(c)

(C5) Cng2(c) ⇒ LRCng(c) ⇒ Cng(c) ⇒ LCng(c) ∧ RCng(c)

Proof: We shall only prove (C4); the proof of (C5) is analogous.
First we shall prove the second implication. By specification,

LMon(c) ⇒ (α ≤ β) → (α c γ → β c γ)
RMon(c) ⇒ (γ ≤ δ) → (β c γ → β c δ).

Combining these formulae we obtain LRMon(c) ⇒ (α ≤ β)&(γ ≤ δ) → ((αcγ → βcγ)&(βcγ → βcδ)).
The transitivity of implication (applied to the consequent of the latter formula) then completes the
proof.

To prove the third implication just observe that setting γ = δ in the definition of Mon(c) yields:

Mon(c) ⇒ (α ≤ β) & (γ ≤ γ) → (α c γ → β c γ)

As clearly γ ≤ γ is a theorem of FCT, the proof is done.
The first implication is a simple corollary of the third one. ¤
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The fact that none of the implications in Theorem 3.6 can in general be reversed has been demon-
strated in [1].

The following observation confirms that so-defined coordinate-wise binary properties coincide with
the corresponding unary properties in one argument:

Observation 3.7 Let cγ(α) = c(α, γ) and cγ(α) = c(γ, α) for all α ∈ L. Then FCT obviously
proves:

(C6) LCng(c) ⇔ (∀γ)Cng(cγ)

(C7) RCng(c) ⇔ (∀γ)Cng(cγ)

and analogously for LMon and RMon.

Like in the unary case, the analogue of LCng featuring implication in place of equivalence, i.e.,

LMonCng(c) ≡df (∀αβγ)((α → β) → (α c γ → β c γ)),

can again be reduced to min-conjunction of LCng and LMon (and similarly for the right-sided variants):

Theorem 3.8 FCT proves:

(C8) LMonCng(c) ↔ LMon(c) ∧ LCng(c)

and similarly for the right-sided variants.

Proof: Let cγ(α) = c(α, γ) for all α ∈ L. Then the following chain of equivalences is provable in
FCT:

(∀αβγ)((α → β) → (α c γ → β c γ))
⇔ (∀γ)MonCng(cγ) by an analogue to Observation 3.7
⇔ (∀γ)(Mon(cγ) ∧ Cng(cγ)) by Theorem 3.2
⇔ (∀γ)Mon(cγ) ∧ (∀γ)Cng(cγ) by quantifier distribution
⇔ LMon(c) ∧ LCng(c) by definition,

and similarly for the variants. ¤

However, the analogous reduction of the both-sided property

MonCng(c) ≡df (∀αβγδ)((α → β) & (γ → δ) → (α c γ → β c δ))

to the both-argument properties Mon(c) and Cng(c) does not hold; see [1] for a counterexample. The
proof of the following theorems are easy (cf. the analogous proof for the unary connectives.)

Theorem 3.9 FCT proves:

(C9) LCng(c), c ≈2 d ⇒ LCng(d), and analogously for RCng

(C10) LMon(c), c u d ⇒ LMon(d), and analogously for RMon

(C11) Cng(c), c ≈2 d ⇒ Cng(d)

(C12) Mon(c), c u d ⇒ Mon(d)

3.3 Graded null and unit elements

Furthermore we define graded generalizations of unit and null elements, obtained again by replacing
= in classical definitions by ↔.

Definition 3.10 In FCT, we define the following graded properties of a binary connective c v L×L:

Unit(c, η) ≡df (∀αβ)(η c α ↔ α) & (β c η ↔ β) Unit element
Null(c, η) ≡df (∀αβ)(η c α ↔ η) & (β c η ↔ η) Null element

6



It would be possible to study also the left and right variants of the “unitness” and “nullness” degree;
however, these variants turn out to play a less significant rôle in theorems on graded dominance,
therefore their study has been left for [1].

In the following theorem, the claims (C13) and (C14) show a graded uniqueness of unit and null
elements; (C15) shows a graded incompatibility of the properties of being a unit and a null of the
same connective; and (C16) is a graded version of the well known fact that if a monotone connective
has the unit 1, then it has the null 0.
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Theorem 3.11 FCT proves:

(C13) Null(c, η), Null(c, ζ) ⇒ (η ↔ ζ)2

(C14) Unit(c, η),Unit(c, ζ) ⇒ (η ↔ ζ)2

(C15) Null(c, η), Unit(c, η) ⇒ 0

(C16) LRMon(c), Unit(c, 1) ⇒ Null(c, 0)

Proof:

(C13) The claim follows from the following implications (and the transitivity of ↔):

Null(c, η) ⇒ η c ζ ↔ η, ζ c η ↔ η

Null(c, ζ) ⇒ η c ζ ↔ ζ, ζ c η ↔ ζ

The proof of (C14) is analogous.

(C15) The claim follows from the following implications, the transitivity of ↔, and the fact that
(1 ↔ 0) = 0:

Unit(c, η) ⇒ η c 0 ↔ 0, 1 c η ↔ 1
Null(c, η) ⇒ η c 0 ↔ η, 1 c η ↔ η

(C16) Clearly 0 → 0 c α and 0 → α c 0 are theorems. The converse implications are derived as
follows: first we obtain 0 c α → 0 c 1, α c 0 → 1 c 0 by LRMon(c) and the theorem α ≤ 1.
Then Unit(c, 1) and the transitivity of implication completes the proof. ¤

The following theorem shows the congruence of the unit and null elements w.r.t. closeness of the
connectives and truth degrees (in the sense of ≈ or u and ↔, resp.).

Theorem 3.12 FCT proves:

(C17) Unit(c), c ≈2 d ⇒ Unit(d)

(C18) Null(c), c ≈2 d ⇒ Null(d)

(C19) Unit(c, η),LRCng(c), (η ↔ ζ)2 ⇒ Unit(c, ζ)

(C20) Null(c, η), LRCng(c), (η ↔ ζ)4 ⇒ Null(c, ζ)

and analogously for RUnit and RNull.

Proof: The proof of the first two claims is straightforward.

(C19) By LRCng(c) and (η ↔ ζ)2 we obtain η cα ↔ ζ cα, β cη ↔ β cζ. An application of Unit(c, η)
then completes the proof.

(C20) By LRCng(c) and (η ↔ ζ)2 we obtain η c α ↔ ζ c α, β c η ↔ β c ζ. Then by Null(c, η) we
obtain η ↔ ζ c α, η ↔ β c ζ and the proof is concluded by using (η ↔ ζ)2. ¤

Observe that the double occurrence of η in the defining formula of null elements causes in (C20)
a greater sensitivity of the “nullness degree” to small (in the sense of ↔) changes in η, compared to
the sensitivity of the “unitness degree” to the same changes in η.

3.4 Graded idempotence, commutativity, and associativity

In this section we shall investigate graded versions of the properties of idempotence, commutativity,
and associativity of binary connectives.
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Definition 3.13 In FCT, we define the following graded properties of a binary connective c v L×L:

Idem(c) ≡df (∀α)(α c α ↔ α) Idempotence
Com(c) ≡df (∀αβ)(α c β ↔ β c α) Commutativity
Ass(c) ≡df (∀αβγ)((α c β) c γ) ↔ (α c (β c γ)) Associativity

These graded properties arise by replacing the (crisp) = in the defining formulae of the cor-
responding crisp properties by the (graded) equivalence connective of fuzzy logic. Notice that by
(C21) of Theorem 3.14, it is immaterial whether we define graded commutativity with implication
or equivalence. Theorem (C22) gives a similar result for the associativity of sufficiently commuta-
tive connectives. Observe also that commutativity of c : L2 → L (i.e., c regarded as a crisp binary
operation on L) is in fact symmetry of c v L2 (i.e., c regarded as a binary fuzzy relation on L).

Theorems (C24) and (C25) show that partial commutativity and associativity is abundant: in
particular, all connectives with less than full “difference” (in the sense of →) between their height
and plinth are at least partially commutative and associative: thus, e.g., all subnormal connectives
in ÃLukasiewicz models have non-zero degrees of commutativity and associativity. Theorem (C26)
generalizes the basic fact that the minimum is the only idempotent t-norm [15].

Theorem 3.14 FCT proves:

(C21) Com(c) ⇔ (∀αβ)(α c β → β c α)

(C22) Com2(c) ⇒ Ass(c) ↔ (∀αβγ)((α c β) c γ) → (α c (β c γ))

(C23) Com(c) ⇔ c ≈ c−1 ⇔ c ⊆ c−1

(C24) Hgt(c) → Plt(c) ⇒ Com(c)

(C25) Hgt(c) → Plt(c) ⇒ Ass(c)

(C26) Idem(c), LMon(c) ∧ RMon(c) ⇒ ∧ ⊆ c

Proof:

(C21) The left-to-right direction holds trivially (a fortiori). Conversely, (∀αβ)(αcβ → β cα) implies
by specification α c β → β c α as well as β c α → α c β, and so it implies (α c β → β c α) ∧
(β c α → α c β), i.e., (α c β ↔ β c α), whence (∀αβ)(α c β → β c α) → Com(c) is obtained by
generalization.

(C22) One direction of the claim holds a fortiori. To obtain the converse direction, use commutativity
twice to rearrange the arguments on both sides of implication.

(C23) The first equivalence follows directly from the definition and the second from (C21).

(C24) First observe that Hgt(c) → Plt(c), i.e., (∃αβ)(α c β) → (∀α′β′)(α′ c β′), is equivalent to
(∀αβα′β′)(α c β → α′ c β′) by quantifier shifts valid in MTL. Then specify β for α′ and α for
β′ in the latter formula to obtain Com(c) by (C21).

(C25) Proceed as in (C24), only specify α c β for α, γ for β, α for α′, and β c γ for β′.

(C26) By prelinearity, we can take two crisp cases, α ≤ β and β ≤ α. If α ≤ β, we have:

α ∧ β ⇒ α ⇒ α c α by Idem(c)
⇒ α c β by RMon(c)

Analogously we have α ∧ β → α c β by Idem(c) and LMon(c) if β ≤ α. ¤

As expected, commutativity converts left-properties to right-properties and vice versa, and swaps
the indices in both-sided properties. The following theorem indicates the multiplicities of commuta-
tivity needed for these conversions:

Theorem 3.15 FCT proves:

(C27) Com2(c) ⇒ LCng(c) ↔ RCng(c)
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(C28) Com2(c) ⇒ LMon(c) ↔ RMon(c)

Proof:

(C27) It is sufficient to derive LCng(c) → RCng(c), as the converse follows by symmetry and
the equivalence is obtained by min-conjunction. The proof follows easily from the fact that
αcγ ↔ β cγ implies γ cα ↔ γ cβ by applying Com(c) to both sides of the former equivalence.

The proof of (C28) is analogous. ¤

The following theorem shows the transmission of these properties to connectives that are close in
the sense of ≈ or u:

Theorem 3.16 FCT proves:

(C29) Idem(c), c ≈ d ⇒ Idem(d)

(C30) Com(c), c u d ⇒ Com(d)

(C31) Ass(c1), c1 ≈4 c2, LCng(ci), RCng(cj) ⇒ Ass(c2), for i, j ∈ {1, 2}

Proof:

(C29) By respectively using c ≈ d and Idem(c) we obtain: α d α ⇔ α c α ⇔ α.

(C30) By d ⊆ c, Com(c), and c ⊆ d, respectively, we obtain the following chain of implications:

α d β ⇒ α c β ⇒ β c α ⇒ β d α

Observe that Com(c) in the form of (C21) has to be used, as we would only obtain ≈2 rather
than u in (C30) from the form of Definition 3.13.

(C31) We shall only prove the case i = j = 1, by the following chain of equivalences:

(α c2 β) c2 γ ⇔ (α c2 β) c1 γ by c1 ≈ c2

⇔ (α c1 β) c1 γ by c1 ≈ c2 and LCng(c1)
⇔ α c1 (β c1 γ) by Ass(c1)
⇔ α c1 (β c2 γ) by c1 ≈ c2 and RCng(c1)
⇔ α c2 (β c2 γ) by c1 ≈ c2

The other cases only differ in the order of replacing c1 and c2, which determines whether the
left and right congruence of c1 or c2 is used. ¤

The assertions of the following Theorem 3.17 are generalizations of well-known basic properties of
t-norms. Theorem (C32) corresponds to the fact that the minimum is the greatest (so-called strongest)
t-norm [15], while (C33) provides a graded characterization of the idempotents of c [15].

Theorem 3.17 FCT proves:

(C32) Mon(c),Unit(c, 1) ⇒ c ⊆ ∧
(C33) Mon(c),Unit(c, 1) ⇒ (α c α ↔ α) ↔ (∀β)((α c β) ↔ (α ∧ β))

Proof:

(C32) First we derive α c β → β by Mon(c) and Unit(c, 1):

α c β ⇒ 1 c β by Mon(c) and the theorem α ≤ 1
⇒ β by Unit(c, 1).

Analogously we derive α c β → α. Thus α c β → α ∧ β by the theorem’s premises.
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(C33) The right-to-left direction of the equivalence in the conclusion is trivial by specification β = α.
The converse consists of proving two implications: using (C32) we get the left-to right direction
for free. For the right-to-left implication inspect the proof of (C26) and instead of Idem(c)
use just (α c α ↔ α). Finally observe that by (C4), the premise LMon(c) ∧ RMon(c) used in
(C26) is weaker than our premise Mon(c). ¤

Note that the premises of both claims in the previous theorem could be weakened to (LMon(c) &
LUnit(c, 1)) ∧ (RMon(c)& RUnit(c, 1)), where LUnit and RUnit would be the corresponding obvious
definitions of left and right ‘uniteness’ degrees.

Remark 3.18 It can be observed that the traditional non-graded classes of truth-value operators
can be defined by requiring the full satisfaction of some of the properties defined in Definition 3.13
and 3.10. In particular, a connective c is a (non-graded)

t-norm iff 4Com(c),4Ass(c),4LMon(c),4Unit(c, 1)
uninorm iff 4Com(c),4Ass(c),4LMon(c), (∃η)4Unit(c, η)

binary aggregation operator iff 4Mon(c), 1 c 1 = 1, 0 c 0 = 0

Furthermore, in standard ÃLukasiewicz logic, c is a (non-graded)

quasicopula iff 4Unit(c, 1), 4Null(c, 0),4MonCng(c).

Idempotent binary aggregation operators are those which additionally satisfy4 Idem(c); commutative
quasicopulas those which also satisfy 4Com(c); etc. Observe that quasicopulas can in our setting be
generalized not just in a graded manner, but also to analogous operators that satisfy MonCng or Cng
wrt an equivalence ↔ other than standard ÃLukasiewicz as a measure of distance. We shall, however,
not pursue this direction here and shall now turn to the graded notion of dominance relation.

4 Graded dominance

By replacing the crisp ≤ with → (i.e., by deleting the 4 hidden by Convention 2.1 in ≤ that appears
in the non-graded definition), we obtain the following notion of graded dominance between binary
fuzzy connectives. As usually, the traditional notion of dominance is expressible as the graded notion
satisfied to degree 1, i.e., prepended with 4.

Definition 4.1 The graded relation ¿ of dominance between binary connectives is defined as follows:

c ¿ d ≡df (∀αβγδ)((α d γ) c (β d δ) → (α c β) d (γ c δ))

4.1 General properties of graded dominance

The following theorem shows how graded dominance is transmitted to ≈-close connectives:

Theorem 4.2 FCT proves:

(D1) c ¿ d, c ≈3 c′, Cng(d) ⇒ c′ ¿ d

(D2) c ¿ d,d ≈3 d′, Cng(c) ⇒ c ¿ d′

Proof: Claim (D1) is proved by the following chain of implications:

(α d γ) c′ (β d δ) ⇔ (α d γ) c (β d δ) by c ≈ c′

⇒ (α c β) d (γ c δ) by c ¿ d

⇒ (α c′ β) d (γ c′ δ) by c ≈2 c′, Cng(d).

The proof of (D2) is analogous. ¤
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The following theorem shows the behavior of graded dominance under (graded) commutativity
and associativity:

Theorem 4.3 FCT proves, for any i ∈ {1, 2}:
(D3) 4Com(c),4Ass(c) ⇒ c ¿ c

(D4) 4Com(ci),4Ass(ci),Cng(ci), c1 ≈3 c2 ⇒ c1 ¿ c2

(D5) 4Com(ci),4Ass(ci),Mon(ci), c1 ⊆ c2, c2 v c1 ⇒ c1 ¿ c2

(D6) Com(c),Ass4(c),LRCng(c) ⇒ c ¿ c

(D7) Com(ci), Ass4(ci), Cng2(ci), c1 ≈3 c2 ⇒ c1 ¿ c2

(D8) Com(ci), Ass4(ci), LRCng(ci), Mon(ci), c1 ⊆ c2, c2 v c1 ⇒ c1 ¿ c2

Proof:

(D3) The proof is in fact classical (non-graded), but shall be adapted in (D6) to obtain a graded
version.

From4Com(c) we obtain γcβ = βcγ, so (by the axioms of identity) also (γcβ)cδ = (βcγ)cδ.
Thence by 4Ass(c) (used twice) we obtain γ c (β c δ) = β c (γ c δ), and so also (by the axioms
of identity) α c (γ c (β c δ)) = α c (β c (γ c δ)). Applying 4Ass(c) twice then completes the
proof.

(D4) We shall prove the claim for i = 1; the proof for i = 2 just uses (D2) instead of (D1).

By (D3) we obtain that 4Com(c1) and 4Ass(c1) imply c1 ¿ c1, and by (D1) we further
obtain that c1 ¿ c1, c1 ≈3 c2, and Cng(c1) imply c1 ¿ c2.

(D5) We shall prove the theorem for i = 1; the proof for i = 2 is analogous. From c2 v c1 we get
(α c2 γ) ≤ (α c1 γ) and (β c2 δ) ≤ (β c1 δ). Then we have the following chain of implications:

(α c2 γ) c1 (β c2 δ) ⇒ (α c1 γ) c1 (β c1 δ) by Mon(c1)
⇒ (α c1 β) c1 (γ c1 δ) by 4Com(c1) and 4Ass(c1), using (D3)
⇒ (α c1 β) c2 (γ c2 δ) by c1 ⊆ c2.

(D6) The proof is analogous to that of (D3), just using the graded assumptions and LCng(c) instead
of the first use of the identity axiom and RCng(c) instead of the second.

The proofs of (D7) and (D8) are analogous to those of (D4) and (D5), respectively, only using (D6)
instead of (D3). ¤

Theorem (D6) can be informally explained as saying that self-domination (or Aczél’s property of
bisymmetry) holds not only for t-norms (or any commutative and associative connective, see (D3)),
but to a fair degree also for all connectives that are fairly commutative, very associative, and fairly
left-right congruent. Theorems (D4) and (D7) generalize the result for a pair of connectives that may
not be identical, but are still very close to each other (i.e., when c1 ≈3 c2 holds to a fairly large degree).
Theorems (D5) and (D8) have no counterparts among known results; they provide us with bounds for
the degree to which (c1 ¿ c2) holds, where the assumption (c1 ⊆ c2) & (c2 v c1) would be obviously
useless in the crisp non-graded framework (as it necessitates that c1 and c2 coincide anyway). Notice
that theorems (D6)–(D8) show that the crisp preconditions of 4Com and 4Ass can be relaxed by
replacing them with graded ones, if some of the connectives in question are sufficiently congruent
with equivalence. (Note, however, the heavy dependence of the estimated degree of dominance on the
degree of associativity of one of the connectives, due to Ass4 in these theorems.)

The following theorems deal with interactions between dominance and units. Read contraposi-
tively, they provide bounds to the degree of dominance from the (usually known or at least more
easily calculable) degrees of subsethood of the connectives and their units. (generalizing the known
fact that dominance implies inclusion / pointwise order.)
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Theorem 4.4 FCT proves the following graded properties of dominance:

(D9) 4Unit(c, η),4Unit(d, η)), c ¿ d ⇒ c ⊆ d

(D10) Unit(c, η),Unit(d, η),Cng(c), Cng(d), c ¿ d ⇒ c ⊆ d

(D11) Unit(c, η),Unit(d, ζ),Cng(c), Cng3(d), c ¿ d, (η ↔ ζ)2 ⇒ c ⊆ d

(D12) Unit(c, η),Unit(d, ζ),Cng(c), Cng(d), c ¿ d, η c η ↔ η, ζ d ζ ↔ ζ ⇒ η → ζ

(D13) Unit2(c, η),Unit2(d, ζ)), Cng(c), Cng(d), c ¿ d ⇒ η → ζ

Proof:

(D9) By c ¿ d we have (αd η)c (η d δ) → (α c η)d (η c δ). From the assumptions αd η = α c η = α
and η d δ = η c δ = δ we get the required α c δ → α d δ.

(D10) Analogously to the previous proof, we derive:

(α d η) c (η d δ) → (α c η) d (η c δ) by c ¿ d

⇒ (α d η) c (η d δ) → α d δ by Unit(c, η) (whence α c η ↔ α, η c δ ↔ δ) and Cng(d)
⇒ α c δ → α d δ analogously by Unit(d, η) and Cng(c)

(D11) The claim follows from (D10) by (C19). (Note that even the weaker assumption Cng(d) &
LRCng(d) could be used instead of Cng3(d).)

(D12) The claim is proved by the following chain of implications and equivalences:

η ⇔ η c η by the assumption
⇔ (ζ d η) c (η d ζ) by Unit(d, ζ) and Cng(c)
⇒ (ζ c η) d (η c ζ) by c ¿ d

⇔ ζ d ζ by Unit(c, η) and Cng(d)
⇔ ζ by the assumption

(D13) This claim is just a weaker (but simpler to formulate) corollary of (D12). ¤

The following theorem shows preservation of dominance under compositions:

Theorem 4.5 Let α e β ≡ (α a β) c (α b β) and α f β ≡ (α a α) c (β b β) for all α, β ∈ L. Then FCT
proves:

(D14) d ¿ c,4(d ¿ a),4(d ¿ b), Mon(c) ⇒ d ¿ e

(D15) d ¿ c,4(d ¿ a),4(d ¿ b), Mon(c) ⇒ d ¿ f

(D16) d ¿ c,d ¿ a,d ¿ b, MonCng(c) ⇒ d ¿ e

(D17) d ¿ c,d ¿ a,d ¿ b, MonCng(c) ⇒ d ¿ f

Proof:

(D14) The claim is proved by the following chain of implications:

(α e γ) d (β e δ)
⇔ ((α a γ) c (α b γ)) d ((β a δ) c (β b δ)) by the definition of e

⇒ ((α a γ) d (β a δ)) c ((α b γ) d (β b δ)) by d ¿ c

⇒ ((α d β) a (γ d δ)) c ((α d β) b (γ d δ)) by 4(d ¿ a),4(d ¿ b),Mon(c)
⇔ (α d β) e (γ d δ) by the definition of e
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(D15) Analogously to (D14), the claim is proved by the following chain of implications:

(α e γ) f (β e δ)
⇔ ((α a α) c (γ b γ)) d ((β a β) c (δ b δ)) by the definition of f

⇒ ((α a α) d (β a β)) c ((γ b γ) d (δ b δ)) by d ¿ c

⇒ ((α d β) a (α d β)) c ((γ d δ) b (γ d δ)) by 4(d ¿ a),4(d ¿ b),Mon(c)
⇔ (α d β) f (γ d δ) by the definition of e

The proofs of (D16) and (D17) are analogous, only the use of d ¿ a,d ¿ b enforces the use of
MonCng instead of just Mon. ¤

Theorem 4.6 FCT proves the following graded properties of dominance:

(D18) & ¿ c,Mon(c) ⇒ c ¿→
(D19) & ¿ c,Mon(c) ⇒ c ¿↔
(D20) & ¿ c,Mon(c), Unit(c, 1) ⇒ LCng(c), and analogously for RCng(c)

(D21) & ¿ c,Mon(c), & ⊆ c ⇒ Cng(c)

(D22) & ¿2 c,Mon(c),4Unit(c, 1) ⇒ Cng(c)

Proof:

(D18) ((α → β) & α) ≤ β and ((γ → δ) & γ) ≤ δ. Thus by Mon(c) we obtain ((α → β) & α) c ((γ →
δ) & γ) → β c δ. As & ¿ c, we obtain ((α → β) c (γ → δ)) & (α c γ) → β c δ, whence by
residuation (α → β) c (γ → δ) → (α c γ → β c δ).

(D19) The proof is analogous to (D18).

(D20) By Unit(c, 1) we obtain α ↔ β ⇔ (α ↔ β) c 1 ⇔ (α ↔ β) c (γ ↔ γ). Furthermore, by (D19)
we obtain (α ↔ β) c (γ ↔ γ) ⇒ (α c γ ↔ β c γ) from & ¿ c and Mon(c).

(D21) By (D19) we obtain (α ↔ β) c (γ ↔ γ) ⇒ (α c γ ↔ β c γ) from & ¿ c and Mon(c). The
assumption & ⊆ c completes the proof.

(D22) The proof follows from the previous claim and Theorem (D9). ¤

Theorem 4.7 FCT proves the following graded properties of dominance w.r.t. ∧:

(D23) Mon(c) ⇒ c ¿ ∧
(D24) 4Unit(c, 1) ⇒ (∧ ¿ c) ≤ (∧ ⊆ c)

(D25) Unit(c, 1), Cng(c),∧ ¿ c ⇒ ∧ ⊆ c

(D26) 4Mon(c),4Unit(c, 1) ⇒ (∧ ⊆ c) = (∧ ¿ c)

(D27) LMon(c) ∧ RMon(c) ⇒ (∧ ¿ c) ↔ (∀αβ)((α c 1) ∧ (1 c β) → α c β) & (∀αβ)(α c β →
(α c 1) ∧ (1 c β))

(D28) 4Mon(c) ⇒ 4(∧ ¿ c) ↔ (∀αβ)((α c 1) ∧ (1 c β) = α c β)

Proof:

(D23) From α ∧ γ ≤ α and β ∧ δ ≤ β we obtain (α ∧ γ) c (β ∧ δ) → (α c β) by Mon(c). Analogously
we obtain (α ∧ γ) c (β ∧ δ) → (γ c δ) and the proof is done.

(D24) The claim follows from (D9) by 4Unit(∧, 1).

(D25) The claim follows from (D10) by 4Unit(∧, 1) and 4Cng(∧).

(D26) We only need to derive (∧ ⊆ c) ≤ (∧ ¿ c), as the converse inequality follows from (D24). First
observe that from 4Mon(c) and 4Unit(c, 1) we obtain c v ∧ by (C32). Since furthermore
4Com(∧), 4Ass(∧), and 4Mon(∧), we can use (D5) to complete the proof.
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(D27) Left to right: From ∧ ¿ c we obtain (α c 1) ∧ (1 c β) ⇒ (α ∧ 1) c (1 ∧ β) ⇔ α c β. Since
αcβ → αc1 by RMon(c) and αcβ → 1cβ by LMon(c), we have derived αcβ → (αc1)∧(1cβ)
from the premises of the theorem.

Right to left: Starting from α ≤ β, which implies α ≤ α ∧ β, by LMon(c) we obtain α c 1 →
(α ∧ β) c 1, and so (α c 1) ∧ (β c 1) → (α ∧ β) c 1. The same claim can be proved starting
from β ≤ α, thus by prelinearity we have: LMon(c) ⇒ (α c 1) ∧ (β c 1) → (α ∧ β) c 1.
Analogously we can prove RMon(c) ⇒ (1 c γ) ∧ (1 c δ) → 1 c (γ ∧ δ). Thus together (with a
little rearranging) we have:

LMon(c)∧RMon(c) ⇒ (α c 1)∧ (1 c γ)∧ (β c 1)∧ (1 c δ) → ((α∧β) c 1)∧ (1 c (γ ∧ δ)) (4.1)

The claim then follows from the following chain of implications:

(α c γ) ∧ (β c δ) ⇒ (α c 1) ∧ (1 c γ) ∧ (β c 1) ∧ (1 c δ) by the second part of the assumption
⇒ ((α ∧ β) c 1) ∧ (1 c (γ ∧ δ)) by (4.1)
⇒ (α ∧ β) c (γ ∧ δ) by the first part of the assumption

(D28) The claim is a direct corollary (by 4-necessitation) of (D27). ¤

Note that (D26) is illustrated by Example 4.8. Theorem (D23) is a graded generalization of the well-
known fact that the minimum dominates any aggregation operator [16]. Theorem (D26) demonstrates
a rather surprising fact: that the degree to which a monotonic binary operation with neutral element
1 dominates the minimum is nothing else but the degree to which it is larger. Theorem (D27) is an
alternative characterization of operators dominating the minimum; for its non-graded version (D28)
see [16, Prop. 5.1].

Example 4.8 Theorem (D26) can be utilized to easily compute degrees to which standard t-norms
on the unit interval dominate the minimum. It can be shown easily that

(∧ ⊆ c) = inf
x∈[0,1]

(x ⇒ c(x, x))

holds, i.e. the largest “difference” of a t-norm c from the minimum can always be found on the
diagonal. In standard ÃLukasiewicz logic, this is, for instance, 0.75 for the product t-norm and 0.5
for the ÃLukasiewicz t-norm itself. So we can infer that the product t-norm dominates the minimum
with a degree of 0.75 (assuming that the underlying logic is standard ÃLukasiewicz!); with the same
assumption, the ÃLukasiewicz t-norm dominates the minimum to a degree of 0.5.

5 Application to graded properties of fuzzy relations

In this section we shall apply graded dominance to graded properties of fuzzy relations.

Definition 5.1 In FCT, we define the following graded properties of binary fuzzy relations:

Refl(R) ≡df (∀x)Rxx reflexivity
Sym(R) ≡df (∀xy)(Rxy → Ryx) symmetry

Transc(R) ≡df (∀xyz)(Rxy c Ryz → Rxz) c-transitivity
Extc(A, R) ≡df (∀xy)(Ax c Rxy → Ay) c-extensionality of A w.r.t. R

AntiSymc(R, E) ≡df (∀xy)(Rxy c Ryx → Exy) c-antisymmetry of R w.r.t. E

Furthermore we define the class operation c given by the connective c as follows:

(P c Q)~x ≡df P~x c Q~x,

for tuples ~x of an arbitrary arity. (Thus, e.g., c is strong intersection if c = &, weak union if c = ∨,
etc., of fuzzy classes or fuzzy relations.)
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The following theorems show the importance of graded dominance for graded properties of fuzzy
relations. Theorem 5.2 is a graded generalization of the well-known theorem by De Baets and Mesiar
that uses dominance to characterize preservation of transitivity by aggregation [12, Th. 2]. By (R4),
in monotone operators with the null element 0 (e.g., t-norms), the degree of graded dominance c ¿ d
is exactly the degree to which c-transitivity is preserved by d-intersections.

Theorem 5.2 FCT proves:

(R1) c ¿ d, Mon(d),4Transc(R),4Transc(S) ⇒ Transc(R d S)

(R2) c ¿ d, Mon(d), Cng(d), Transc(R), Transc(S) ⇒ Transc(R d S)

(R3) 4Null(c, 0), (∀RS)(4Transc(R) & 4Transc(S) → Transc(R d S)) ⇒ c ¿ d

(R4) Mon(d),4Null(c, 0) ⇒ (c ¿ d) ↔ (∀RS)(4Transc(R) & 4Transc(S) → Transc(R d S))

Proof:

(R1) We need to derive Rxz d Sxz from (Rxy d Sxy) c (Ryz d Syz). Now the latter implies
(RxycRyz)d(SxycSyz) by c ¿ d, which in turn implies the required RxzdSxz by Mon(d),
since we have Rxy c Ryz ≤ Rxz and Sxy c Syz ≤ Sxz by 4Transc(R) and 4Transc(S),
respectively.

(R2) Analogously as in the proof of (R1) we derive:

(Rxy d Sxy) c (Ryz d Syz)
⇒ (Rxy c Ryz) d (Sxy c Syz) by c ¿ d

⇒ Rxz d Sxz by Transc(R), Transc(S), Mon(d), Cng(d)

(R3) Fix three elements a 6= b 6= c 6= a and define two relations (see Definition 2.2 for the notation
used):

R =df {ab/α, bc/β, ac/α c β}
S =df {ab/γ, bc/δ, ac/γ c δ}

Since 4Null(c, 0), obviously 4Transc(R) and 4Transc(S). Thus we can infer Transc(RdS),
whence by specification we obtain (Rab d Sab) c (Rbc d Sbc) → (Rac d Sac). To complete the
proof, use the definitions of R and S (by which Rab = α, Sab = β, etc.).

(R4) The claim is a corollary of (R1) and (R3). ¤

The similitude between the defining formulae of Transc(R) and Extc(A,R) makes it possible to
transfer the results of Theorem 5.2 to graded extensionality:

Theorem 5.3 FCT proves:

(R5) c ¿ d, Mon(d),4Extc(A,R),4Extc(B, S) ⇒ Extc(A d B, R d S)

(R6) c ¿ d, Mon(d), Cng(d), Extc(A,R),Extc(B,S) ⇒ Extc(A d B, R d S)

(R7) 4Null(c, 0), (∀ABRS)(4Extc(A,R) & 4Extc(B, S) → Extc(A d B,R d S)) ⇒ c ¿ d

(R8) Mon(d),4Null(c, 0) ⇒ (c ¿ d) ↔ (∀ABRS)(4Extc(A,R) & 4Extc(B,S) → Extc(A d
B, R d S))

Proof: The proofs are analogous to those of Theorem 5.2. As an example we shall show the proof
of (R6):

(Ax d Bx) c (Rxy d Sxy) ⇒ (Ax c Rxy) d (Bx c Sxy) by c ¿ d

⇒ Ay d By by Extc(A,R), Extc(B, S),Mon(d),Cng(d)
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The definitions of R,S in the proof of (R4) need to be changed as follows for the proof of (R8).
We only fix two elements b 6= c and define:

A =df {b/α, c/α c β}, R =df {bc/β}
B =df {b/γ, c/γ c δ}, S =df {bc/δ}

The rest of the proof is analogous to (R4). ¤

Remark 5.4 Theorems 5.2 and 5.3 can be proved jointly if we define R ¹c S ≡df R ◦c S ⊆ S, where
(R◦cS)xz ≡df (∀y)(RxzcSyz). Then by definition, Transc(R) ≡ R ¹c R and Extc(A,R) ≡ R ¹c RA,
where RAxy ≡df (x = a) & Ay for an arbitrary fixed element a (serving as a dummy argument to
increase the arity of A, cf. [9]). Consequently, e.g., both (R2) and (R6) are instances of the more
general theorem c ¿ d, Mon(d), Cng(d), R1 ¹c S1, R2 ¹c S2 ⇒ (R1 d R2) ¹c (S1 d S2), proved in
the similar manner as above.

The following theorem provides us with results on the preservation of various properties by sym-
metrizations of fuzzy relations.

Theorem 5.5 FCT proves:

(R9) Com(c) ⇒ Sym(R c R−1)

(R10) Refl2(R), & ⊆ c ⇒ Refl(R c R−1)

(R11) d ⊆ c ⇒ AntiSymd(R,R c R−1)

(R12) 4Transd(R),d ¿ c, Mon(c) ⇒ Transd(R c R−1)

Proof: Claims (R9)–(R11) follow easily from the definitions. Claim (R12) is a simple corollary
of (R1). ¤

In the crisp case, the commutativity of an operator trivially implies the symmetry of symmetriza-
tions by this operator. In the graded case, (R9) above states that the degree to which a symmetrization
is actually symmetric is bounded below by the degree to which the aggregation operator c is commu-
tative. Theorems (R10)–(R12) are also well-known in the non-graded case [10, 12, 17].
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[2] Libor Běhounek, Ulrich Bodenhofer, and Petr Cintula. Relations in Fuzzy Class Theory: Initial
steps. Fuzzy Sets and Systems, 159(14):1729–1772, 2008.
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[8] Libor Běhounek and Petr Cintula. Fuzzy Class Theory: A primer v1.0. Technical Report V-
939, Institute of Computer Science, Academy of Sciences of the Czech Republic, Prague, 2006.
Available at www.cs.cas.cz/research/library/reports 900.shtml.
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