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aInstitute of Computer Science, Academy of Sciences of the Czech Republic,
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Abstract:

Several modifications of the limited-memory variable metric BNS method for large scale un-
constrained optimization are proposed, which consist in corrections (derived from the idea
of conjugate directions) of the used difference vectors to improve satisfaction of previous
quasi-Newton conditions, utilizing information from previous or subsequent iterations. In case
of quadratic objective functions, conjugacy of all stored difference vectors and satisfaction
of quasi-Newton conditions with these vectors is established. There are many possibilities
how to realize this approach and although only two methods were implemented and tested,
preliminary numerical results are promising.
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1 Introduction

In this report we propose some modifications of the BNS method (see [2]) for large scale
unconstrained optimization

min f(x) : x ∈ RN ,

where it is assumed that the problem function f : RN →R is differentiable.
Similarly as in the multi-step quasi-Newton methods (see e.g. [11]), we utilize informa-

tion from previous (or also subsequent) iterations to correct the used difference vectors
and change quasi-Newton conditions (see below) correspondingly. However, while the
multi-step methods derive the corrections of the difference vectors from various interpo-
lation methods, our approach is based on the idea of conjugate directions (see e.g. [4],
[13]). Note that some of these thoughts are presented in our report [14].

The BNS method belongs to the variable metric (VM) or quasi-Newton line search
iterative methods, see [4], [9]. They start with an initial point x0 ∈ RN and generate
iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0, where dk is the
direction vector and tk > 0 is a stepsize, usually chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1.1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and dk = −Hkgk

with a symmetric positive definite matrix Hk; usually H0 is a multiple of I and Hk+1 is
obtained from Hk by a VM update to satisfy quasi-Newton condition (QNC)

Hk+1yk = sk (1.2)

(see [4], [9]), where yk = gk+1 − gk, k ≥ 0. For k ≥ 0 we denote

bk = sT
kyk

(note that bk > 0 for gk 6= 0 by (1.1)). To simplify the notation we frequently omit index
k and replace index k + 1 by symbol + and index k − 1 by symbol −.

Among VM methods, the BFGS method, see [4], [9], [13], belongs to the most efficient;
the BNS and L-BFGS (see [6], [12]) methods represent its well-known limited-memory
adaptations. In every iteration, we recurrently update matrix ζkI, ζk > 0, by the BFGS
method, using m̃ + 1 couples of vectors (sk−m̃, yk−m̃), . . . , (sk, yk), where

m̃ = min(k, m−1) (1.3)

and m ≥ 1 is a given parameter. Matrix H+ can be explicitly expressed either in the
form, see [2],

H+ = ζI +
[
S, ζY

] [
U−T (D + ζY T Y )U−1 −U−T

−U−1 0

] [
ST

ζY T

]
,

or in the form, which can be also found in [2],

H+ = SU−TDU−1ST + ζ(I − SU−T Y T )(I − Y U−1ST ) , (1.4)
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where Sk = [sk−m̃, . . . , sk], Yk = [yk−m̃, . . . , yk], Dk = diag[bk−m̃, . . . , bk] and (Uk)i,j =
(ST

k Yk)i,j for i ≤ j, (Uk)i,j = 0 otherwise (an upper triangular matrix), k ≥ 0. In both
of the methods, direction vectors can be efficiently calculated, without computing of
matrix H+; e.g. from (1.4) we get

H+g+ = ζg+ + S
[
U−T

(
(D + ζY T Y )U−1STg+ − ζY Tg+

)]
− Y

[
ζU−1STg+

]
, (1.5)

where in brackets we have low-order matrices.
In this report we will investigate the more general form of update formula

H+ = SMST + ζ(I − SKT Y T )(I − Y KST ) , (1.6)

here K, M are (m̃ + 1)× (m̃ + 1) matrices. From (1.6) we obtain

H+Y = S(MST Y ) + ζ(Y − SKT Y T Y )(I −KST Y ) . (1.7)

We can see that if the last column of matrices KST Y − I, MST Y − I is null, then the
last QNC (1.2) is satisfied. For K = M = (ST Y )−1 we get update formula

H+ = S(ST Y )−1ST + ζ
(
I − S(ST Y )−T Y T

) (
I − Y (ST Y )−1ST

)
, (1.8)

which satisfies H+Y = S by (1.7), i.e. QNC with all stored difference vectors are satisfied.
Although this simple choice does not guarantee that the corresponding direction vector
is descent, our new methods are based on this idea. Note that a similar approach is also
used in the method, described in [5], which however needs a higher in order number of
arithmetic operations than the BNS method.

From many possible variants, only two methods were implemented and tested. In
Section 2 we derive the first method, which attempts to approximate matrix ST Y by RL
with suitable matrices R, L, where R is upper triangular and L lower triangular. Matrices
R−T , L−1 can be also understood as matrices of transformations S → S̄ = SR−T , Y →
Ȳ = Y L−1. These transformations use subsequent difference vectors, which means that
each column of S̄, Ȳ is expressed by means of columns of S, Y with greater or equal
indices. If ST Y = RL, we obviously obtain S̄T Ȳ = I.

The second method presented in Section 3 attempts to approximate matrix ST Y by
L−1D̃R−1, where matrix R is upper triangular, L lower triangular and D̃ diagonal (ma-
trices L, R have here another meaning than at the first method), therefore corresponding
transformations S → S̃ = SLT , Y → Ỹ = Y R use previous difference vectors, which
means that each column of S̃, Ỹ is expressed by means of columns of S, Y with smaller
or equal indices. If ST Y = L−1D̃R−1, we obtain S̃T Ỹ = D̃. This method generalizes the
method in [14] in some sense and has also similar theoretical properties.

Numerical experiments are reported in Section 4.

2 Method that use subsequent difference vectors

In this section we propose a recursive process to construct transformation matrices L,
R with suitable properties, where R is upper triangular and L lower triangular, which
approximate solution to problem S̄T Ȳ = R−1(ST Y )L−1 = I.
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In Section 2.1, a basic recursive step of the process is derived and some its properties
are given. In Section 2.2 we show how it can be used to obtain new VM updates. In
Section 2.3 we present a simple modification of the BNS method, which can be used for
transformed matrices S̄, Ȳ to another efficiency improvement in case that matrix S̄T Ȳ
is near to I. In Section 2.4, the situation when the recursive step cannot be performed
or has unsuitable properties is discussed. Finally, in Section 2.5 we describe a selected
implementation of the first testing method in detail.

2.1 Nonsymmetric decomposition

First we show how to replace problem to solve equation R−1(ST Y )L−1 = I by a similar

problem with a smaller dimension. Let S = [S, s], Y = [Y , y], L =
[

L 0

lT
√

b

]
, R =

[
R r

0T
√

b

]
.

Then we can write

R−1(ST Y )L−1 =

[
R−1 −R−1r/

√
b

0T 1/
√

b

] [
ST Y STy
sT Y b

] [
L−1 0

−lTL−1/
√

b 1/
√

b

]

=


R−1

(
ST Y −STylT/

√
b− rsT Y /

√
b + rlT

)
L−1 R−1

(
STy/

√
b− r

)
(
sT Y /

√
b− lT

)
L−1 1


.

From this we can derive the recursive step of the decomposition. If we set

∆l = Y Ts/
√

b− l, ∆r = STy/
√

b− r, (2.1)

we obtain

R−1(ST Y )L−1 =

[
R−1

(
ST Y − STysT Y /b + ∆r∆

T
l

)
L−1 R−1∆r

∆T
l L−1 1

]
. (2.2)

For the choice
l = Y Ts/

√
b, r = STy/

√
b (2.3)

we get

R−1(ST Y )L−1 =

[
R−1(ST Y − STysT Y /b)L−1 0

0T 1

]
. (2.4)

Therefore, we converted the problem to find nonsingular matrices R, L satisfying
R−1(ST Y )L−1 = I to the problem to find nonsingular matrices R, L satisfying R−1(ST Y −
STysT Y /b)L−1 = I. If matrix ST Y − STysT Y /b has the last diagonal element positive,
we can repeat this recursive step, etc.

We show that in case of symmetric positive definite matrix ST Y , e.g. if objective
function f is strictly convex quadratic (see Lemma2.2), this recursive process is well
defined.

Lemma 2.1. Let matrix V be symmetric positive definite, V =
[

V v
vT ν

]
. Then also matrix

V − vvT/ν is symmetric positive definite.

Proof. Since wT V w > 0 for any nonzero w of corresponding dimension, setting
w= [uT, µ]T , µ = −uTv/ν , we obtain

wT V w = uT V u + 2µuTv + µ2ν = uT V u− (uTv)2/ν = uT(V − vvT/ν)u > 0

for any nonzero u, thus matrix V − vvT/ν is symmetric positive definite. 2
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Lemma 2.2. Let f be quadratic function f(x) = 1
2
(x− x∗)T G(x− x∗), x∗ ∈ RN , with a

symmetric positive definite matrix G and suppose that columns of matrix S are linearly
independent. Then matrix ST Y is symmetric positive definite, the decomposition process
described above is well defined, ST Y = RL and LT = R .

Proof. This immediately follows from ST Y = ST GS and Lemma 2.1. 2

2.2 VM updates derived from the complete decomposition

We suppose here that the complete decomposition of ST Y was performed and that we
have matrices R, L satisfying S̄T Ȳ = R−1(ST Y )L−1 = I, or ST Y = RL. From (1.8) we
get nonsymmetric update formula

H
(1)
+ = SL−1R−1ST + ζ(I − SR−T L−T Y T )(I − Y L−1R−1ST ) , (2.5)

which satisfies H
(1)
+ Y = S. Relation R−1(ST Y )L−1 = I can also be rewritten as S̄T Ȳ = I,

where S̄ = SR−T , Ȳ = Y L−1. Considering (1.8) with transformed matrices S̄, Ȳ instead
of S, Y and supposing that S̄T Ȳ = I, we obtain symmetric update formula

H̄+ = S̄S̄T + ζ(I − S̄Ȳ T )(I − Ȳ S̄T ) , (2.6)

which satisfies H̄+Ȳ = S̄ by S̄T Ȳ = I; it together means that columns of S̄ are conjugate
with respect to H̄−1

+ . Setting S̄ = SR−T , Ȳ = Y L−1 into (2.6), we have

H
(2)
+ = SR−T R−1ST + ζ(I − SR−T L−T Y T )(I − Y L−1R−1ST ) . (2.7)

In comparison to H
(1)
+ , matrix H

(2)
+ is always symmetric positive definite.

Lemma 2.3. Matrix H
(2)
+ (if well defined) is always symmetric positive definite.

Proof. Let q ∈ RN , q 6= 0. If S̄T q 6= 0, then qT H
(2)
+ q ≥ |S̄T q|2 > 0 by (2.6), otherwise

qT H
(2)
+ q = ζqT q > 0. 2

Theorem 2.1. Let the assumptions of Lemma 2.2 be satisfied, S̄ = SR−T and Ȳ =
Y L−1. Then S̄T GS̄ = I (conjugacy of columns of S̄), matrices H

(i)
+ are well defined and

symmetric positive definite and H
(i)
+ Y = S, H

(i)
+ Ȳ = S̄ hold, i = 1, 2.

Proof. From Lemma 2.2 we have ST Y = RL, which yields I = S̄T Ȳ = S̄T GS̄, and
LT = R, thus H

(1)
+ = H

(2)
+ . Since H

(1)
+ Y = S, H

(2)
+ Ȳ = S̄, it suffices to use Lemma 2.3. 2

Note that none of these results requires exact line searches and that formulas (2.5)
and (2.7) can be also used in situations when the decomposion mentioned above can be
performed only approximately, see Section 2.4.

2.3 A simple modification of the BNS method

Setting R̂=UD−1/2, L̂=D1/2, we can express the BNS update formula (1.4) in the form
similar to (2.7)

HBNS
+ = SR̂−T R̂−1ST + ζ(I − SR̂−T L̂−T Y T )(I − Y L̂−1R̂−1ST ) . (2.8)

4



Since we can write D= diag[D, b], U =
[

U STy
0T b

]
, we have

R̂ =

[
U STy
0T b

] [
D−1/2 0

0T 1/
√

b

]
=

[
U D−1/2 STy/

√
b

0T
√

b

]
. (2.9)

Writing L̂ =
[

L̂ 0

l̂T
√

b

]
, R̂ =

[
R̂ r̂

0T
√

b

]
, we have l̂= 0 and r̂ = STy/

√
b by (2.9). Using (2.2)

with R̂, L̂ instead of R, L, in view of l̂= ∆r̂ = 0 we obtain

R̂−1(ST Y )L̂−1 =

[
D1/2U−1(ST Y − STysT Y /b)D−1/2 0

sT Y D−1/2/
√

b 1

]
. (2.10)

If we replace matrix L̂ by Ľ = D−1/2V =
[

Ľ 0

ľT
√

b

]
, where V = ST Y − (U −D)=

[
V 0

sTY b

]
,

we get

Ľ =

[
D−1/2 0

0T 1/
√

b

] [
V 0

sT Y b

]
=

[
D−1/2 V 0

sT Y /
√

b
√

b

]
, (2.11)

i.e. ľ = Y Ts/
√

b, which together with r̂ = STy/
√

b implies

R̂−1(ST Y )Ľ−1 =

[
D1/2U−1(ST Y − STysT Y /b)V −1/2D1/2 0

0T 1

]
(2.12)

by (2.2) with R̂, Ľ instead of R, L (i.e. with ∆r̂ = ∆ľ = 0). We see that the replacement
of L̂ by Ľ causes that not only the last column, but also the last row of R̂−1(ST Y )Ľ−1−I
are null. These considerations lead us to formula

HMBNS
+ = SR̂−T R̂−1ST + ζ(I − SR̂−T Ľ−T Y T )(I − Y Ľ−1R̂−1ST )

= SU−TDU−1ST + ζ(I − SU−TDV −T Y T )(I − Y V −1DU−1ST ),
(2.13)

i.e. (2.7) with L = Ľ, R = R̂. Note that matrix HMBNS
+ is always symmetric positive

definite by Lemma 2.3, that the choice ľ = Y Ts/
√

b and r̂ = STy/
√

b is in fact the choice
(2.3) in the first step of decomposition (see Section 2.1) and that formula (2.13) can be
more efficient then the BNS method in case that matrix ST Y is near to I; this situation
can occur for transformed matrices when we get a good approximation of the complete
decomposition mentioned in Section 2.2.

2.4 Approximate decomposition

If the last diagonal element of matrix J = ST Y − STysT Y /b in (2.4) is not positive
and the dimension of J is greater than one, the recursive step should not be performed,

since we could not divide in (2.3) by
√

Jm̃,m̃ to calculate vectors l, r in the next step.
This drawback can be eliminated by modifications of transformation matrices R, L or by
suitable corrections before or after construction of matrix J . Note that we consider here
only the first recursive step, but it can be easily generalized to other steps.

Besides, H+Ȳ = S̄ implies H+Y = S(R−T L) by S̄ = SR−T and Ȳ = Y L−1.
Therefore QNC with transformed matrices S̄, Ȳ can be a good substitute for QNC with
S, Y only in case that R−T L ≈ I, i.e. L ≈ RT . Thus we should not modify matrices R,
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L or suitably correct matrix J , whenever the corresponding elements of vectors STy, Y Ts
are too different.

Modifications of transformation matrices R, L can be realized in the following way -
we first set l = Y Ts/

√
b, r = STy/

√
b and then replace some elements of l, r by zero if

corresponding elements of vectors STy, Y Ts are too different or if relevant diagonal element
of matrix J would be negative or too small. Subsequently, we define vectors ∆r, ∆l by
(2.1) with these new vectors l, r. To obtain matrix ST Y −STysT Y /b+∆r∆

T
l = J +∆r∆

T
l

in (2.2), we then modify matrix J in such a way that we simply replace elements of
J + ∆r∆

T
l corresponding to zero elements of both l and r by relevant elements (with the

same indices) of matrix ST Y .
We also got good results with various corrections of matrix J , e.g. increasing of some

diagonal elements of ST Y , but the best results were obtained with the following simple
corrections - before each step of decomposition, we replace problematic elements of vector
Y Ts by zero, while vector STy is left unchanged.

Finally, a side effect of transformations is deterioration of stability; thus sometimes, if
a contribution of transformation would be too small, it is better to omit a corresponding
part of the decomposition, see Section 2.5 for details.

After the whole approximate decomposition, we can use transformation matrices R,
L and calculate matrix H+, using formula (2.5) or (2.7). We can also utilize the BNS
formula (1.4) or its variant (2.13) with transformed matrices S̄ = SR−T , Ȳ = Y R−1, D̄,
Ū , V̄ instead of S, Y , D, U , V , where D̄i,j = (S̄T Ȳ )i,j for i = j, D̄i,j = 0 otherwise (the
diagonal of S̄T Ȳ ), Ūi,j = (S̄T Ȳ )i,j for i ≤ j, Ūi,j = 0 otherwise and V̄ = S̄T Ȳ − (Ū − D̄).
E.g. update formula (1.4) with transformed matrices has the form

H
(3)
+ = S̄Ū−TD̄Ū−1S̄T + ζ(I − S̄Ū−T Ȳ T )(I − Ȳ Ū−1S̄T )

= SR−TŪ−TD̄Ū−1R−1ST + ζ(I − SR−TŪ−TL−T Y T )(I − Y L−1Ū−1R−1ST ).
(2.14)

We tested all these update methods and the results were comparable.

2.5 Implementation

In this section we describe only the first selected testing method. First we give a procedure
for updating of basic low-order matrices ST Y , Y T Y , similar to the algorithm given in [2]
for updating of matrices D, U , Y T Y used in (1.5). Note that step (ii) requires mn extra
multiplications (to compute vector Y Ts), compared with the corresponding algorithm in
[2] and that the number of operations can be reduced, but it is not implemented in this
testing version of the method).

Procedure 2.1 (Matrix Updating)

Given: s, y, g+, matrices S−, Y−, ST
−Y−, Y T

− Y− and vectors ST
−g, Y T

−g.

(i): Set S = [S−, s], Y = [Y−, y].

(ii): Compute STg+ = [ST
−g+, sTg+], Y Tg+ = [Y T

− g+, yTg+], Y Ts = [Y T
− s, yTs], yTy.

(iii): Compute ST
−y = ST

−g+ − ST
−g, Y T

−y = Y T
−g+ − Y T

−g.

(iv): Set ST Y =
[

ST
−Y− ST

−y
sT Y− sTy

]
, Y T Y =

[
Y T
− Y− Y T

−y
yT Y− yTy

]
and return.
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To decompose matrix ST Y with simple corrections, mentioned in Section 2.4, we use
the following procedure. Conditions in steps (ii) and (iii) were found empirically. Note
that condition σinσni > 0.99999σiiσnn in step(iii), which guarantees that new diagonal
elements of matrix [σij]j=1,...,n−1

i=1,...,n−1
in step(v) will not be too small, can be written in the

form σii − σinσni/σnn <10−5σii .

Procedure 2.2 (Decomposition)

Given: A dimension n̄ of matrix ST Y .

(i): Set iD =1 (decomposition indicator), n= n̄ and σij =(ST Y )i,j, 1≤ i ≤n, 1≤j ≤n.

(ii): Set ∆= max
i=1,...,n−1

|σin−σni|/√σiiσnn . If ∆<10−7 set iD =0 and go to (vi). Set i=1.

(iii): If σinσni <0 or σinσni >0.99999σiiσnn or |σin−σni|>0.02(σii+σnn) or σii <0.01sT
i yi

then set σni = 0.
(iv): Set i := i + 1. If i < n go to (iii).

(v): Set [σij]j=1,...,n−1
i=1,...,n−1

:= [σij]j=1,...,n−1
i=1,...,n−1

− [σn1, . . . , σn,n−1][σ1n, . . . , σn−1,n]T/σnn and then

n := n− 1. If n > 1 goto (ii).

(vi): Set Li,j = σij/
√

σnn for 1 ≤ j ≤ i ≤ n, Ri,j = σij/
√

σnn for 1 ≤ i ≤ j ≤ n,
Li,j = Ri,j = 0 otherwise. If iD = 0 set Li,j = 0 for 1 ≤ j < i ≤ n. Return.

We now state the method in details. To compute the direction vector in Step 5, we
use formula (2.5) or (2.7) and express H+g+ similarly as in (1.5):

H
(1)
+ g+ = ζg++ S

[
(L−1+ ζR−TE)R−1STg+− ζR−TL−T Y Tg+

)]
− Y

[
ζL−1R−1STg+

]
, (2.15)

H
(2)
+ g+ = ζg++ S

[
R−T

(
(I+ ζE)R−1STg+− ζL−T Y Tg+

)]
− Y

[
ζL−1R−1STg+

]
, (2.16)

where E = L−T (Y T Y )L−1 and in brackets we have low-order matrices. For simplicity, we
omit stopping criteria and contingent restarts when the direction vector is not descent.

Algorithm 2.3

Data: A number m ≥ 1 of VM updates per iteration and line search parameters ε1, ε2,
0<ε1 <1/2, ε1 <ε2 <1.

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H0 = I and
direction vector d0 = −g0 and initiate iD = 1 and iteration counter k to zero.

Step 1: Line search. Compute xk+1 = xk+tkdk, where tk satisfies (1.1), gk+1 = ∇f(xk+1),
sk = tkdk, yk = gk+1 − gk and ζk = sT

k yk/y
T
k yk. If k = 0 set Sk = [sk], Yk = [yk],

ST
k Yk = [sT

k yk], Y T
k Yk = [yT

k yk], compute ST
k gk+1, Y T

k gk+1 and go to Step 4.

Step 2: Matrix updating. If k > m delete the first column of Sk−1, Yk−1 and the first row
and column of ST

k−1Yk−1, Y T
k−1Yk−1. Using Procedure 2.1, form matrices Sk, Yk,

ST
k Yk, Y T

k Yk.

Step 3: Decomposition. Using Procedure 2.2, find matrices Lk,Rk and value of iD.

Step 4: Direction vector. Compute dk+1 = −Hk+1gk+1 by (2.15) for iD = 0 or by (2.16)
for iD = 1, set k := k + 1 and go to Step 1.
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3 Method that use previous difference vectors

In this section we propose a recursive process to construct diagonal matrix D̃ with positive
elements and transformation matrices L, R with suitable properties, where R is upper
triangular and L lower triangular, which approximate solution to problem L(ST Y )R = D̃.
Then we give some properties of this process and show how it can be used to derive a
new VM update, which is the BNS method with transformed matrices S̃ = SLT , Ỹ = Y R
instead of S,Y . We also discuss situation when some modifications of the decomposition
process are needful or suitable. Finally, we describe a selected implementation of the
second testing method in detail.

The use of previous difference vectors together with the BNS method with transformed
matrices has the additional advantage – we recurrently update matrix ζkI, ζk > 0, by
the BFGS method, using m̃+1 couples of vectors, here columns of transformed matrices
S̃, Ỹ . Therefore elements of transformation matrices LT , R in case of quadratic objec-
tive functions can be derived not only from the idea of conjugate directions, but also
variationally, see Section 3.2.

3.1 Nonsymmetric decomposition

Similarly as in Section 2.1, we first derive the recursive step of the decomposition. Let
S = [S, s], Y = [Y , y], L =

[
L 0
lT 1

]
, R =

[
R r
0T 1

]
. Then we can write

S̃ = SLT = [S, s]
[

LT l
0T 1

]
= [S LT , S l + s]

∆
= [S̃, s̃], (3.1)

Ỹ = Y R = [Y , y]
[

R r
0T 1

]
= [Y R, Y r + y]

∆
= [Ỹ , ỹ], (3.2)

which implies

L(ST Y )R = S̃T Ỹ =

[
S̃

T
Ỹ S̃

T
ỹ

s̃T Ỹ s̃T ỹ

]
=

[
L(ST Y )R L(STỹ)
(s̃T Y )R s̃T ỹ

]
. (3.3)

If we find vectors l, r in such a way that b̃
∆
= s̃T ỹ > 0 (then the corresponding BFGS

update with transformed matrices preserves positive definiteness of the VM matrix) and
STỹ = Y Ts̃ = 0, we obtain

L(ST Y )R = S̃T Ỹ =

[
L(ST Y )R 0

0T b̃

]
=

[
S̃

T
Ỹ 0

0T b̃

]
. (3.4)

Therefore, we converted the problem to find matrix D̃ with positive elements and non-
singular matrices L, R satisfying S̃T Ỹ = L(ST Y )R = D̃ to the problem to find matrix D̃

with positive elements and nonsingular matrices L, R satisfying S̃
T
Ỹ = L(ST Y )R = D̃

and we can repeat this recursive step, etc.

Lemma 3.1. Let matrix ST Y be nonsingular and let

l∗ = −(Y TS)−1Y Ts, r∗ = −(ST Y )−1STy. (3.5)
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Then the unique solution (l, r) to STỹ=Y Ts̃=0 is (l∗, r∗). Moreover, for any l, r it holds

b̃ = (l − l∗)T ST Y (r − r∗) + b∗, b∗= b− sT Y (ST Y )−1STy. (3.6)

Proof. From ST Y r∗=−STy and Y TS l∗=−Y Ts, we obtain firstly ST Y (r−r∗)=ST(Y r+
y)=STỹ and similarly Y TS(l−l∗)=Y Ts̃, which gives the first part, and secondly

(l − l∗)T ST Y (r − r∗) =
(
lTST Y r + lTST y + sT Y r

)
− sT Y r∗,

which by (3.5) yields

b̃ = (Sl+s)T (Y r+y) =
(
lTST Y r + lTST y + sT Y r

)
+ b

= (l − l∗)T ST Y (r − r∗) + b− sT Y (ST Y )−1STy

and concludes the proof. 2

We show that in case of symmetric positive definite matrix ST Y , e.g. if objective
function f is strictly convex quadratic (see Lemma 2.2), this recursive step is well defined.

Lemma 3.2. Let matrix ST Y be symmetric positive definite. Then the recursive step
described above is well defined, l∗ = r∗ and b∗ > 0. Moreover, b̃ ≥ b∗ for any l, r
satisfying l=r, i.e. b̃ > 0 holds and this value is minimized by the choice l = l∗, r = r∗.

Proof. The recursive step is well defined by Lemma 3.1. Relations l∗ = r∗ and b̃ ≥ b∗

for l= r immediately follow from (3.5), (3.6) and symmetry and positive definiteness of
ST Y . Let u = STy = Y Ts, v = −(ST Y )−1u = l∗ = r∗, w = [vT , 1]T . Then

0 < wT(ST Y )w = [vT, 1]
[

ST Y u
uT b

][
v
1

]
= vT(ST Y )v + 2 uTv + b = b + uTv = b∗

by (3.6) and positive definiteness of ST Y . 2

Corollary 3.1. If matrix ST Y is symmetric positive definite then the decomposition pro-
cess described above is well defined and LT = R.

3.2 VM update derived from the complete decomposition

We suppose here that the complete decomposition of nonsingular ST Y was performed and
that we have matrix D̃ with positive elements and nonsingular matrices R, L satisfying

S̃
T
Ỹ = L(ST Y )R = D̃. (3.7)

Using the BNS formula (1.4) with transformed matrices S̃ = S LT, Ỹ = Y R, D̃, Ũ = D̃
instead of S, Y , D, U , we get

H̃ = S̃ Ũ
−T

D̃ Ũ
−1

S̃
T

+ ζ(I − S̃ Ũ
−T

Ỹ
T
)(I − Ỹ Ũ

−1
S̃

T
)

= S̃ D̃
−1

S̃
T

+ ζ(I − S̃ D̃
−1

Ỹ
T
)(I − Ỹ D̃

−1
S̃

T
) ,

(3.8)
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which yields
H̃Ỹ = S̃ (3.9)

by (3.7). For b̃ > 0 we will consider matrix

H̃+ =
s̃s̃T

b̃
+

(
I − s̃ỹT

b̃

)
H̃

(
I − ỹs̃T

b̃

)
, (3.10)

satisfying H̃+ỹ = s̃, and investigate its properties for various vectors l, r (recall that s̃, ỹ
are given by (3.1), (3.2)). Since (3.10) represents the BFGS update of H̃ with vectors s̃,
ỹ, from theory given in [2] we can deduce that matrix H̃+ can be obtained by the BNS
formula (1.4) with transformed matrices S̃, Ỹ , i.e. by analogy with (3.8):

H̃+ = S̃ D̃−1S̃T + ζ(I − S̃ D̃−1Ỹ T )(I − Ỹ D̃−1S̃T )

= SLT D̃−1LST + ζ(I − SLT D̃−1RT Y T )(I − Y RD̃−1LST ) ,
(3.11)

where D̃=
[

D̃ 0

0T b̃

]
. As we can expect, matrix H̃+ is always symmetric positive definite.

Lemma 3.3. Matrix H̃+ (if well defined) is always symmetric positive definite.

Proof. Let q ∈ RN , q 6= 0. If S̃T q 6= 0, then also D̃−1/2S̃T q 6= 0 and qT H̃+q ≥
|D̃−1/2S̃T q|2 > 0 by (3.11), otherwise qT H̃+q = ζ qTq > 0. 2

For the choice l = l∗, r = r∗, QNC H̃+Ỹ = S̃ is satisfied and columns of S̃D̃−1/2 are
conjugate with respect to H̃−1

+ .

Lemma 3.4. Let matrix H̃+ be given by (3.11) and l= l∗, r= r∗ with b̃ = b∗ > 0. Then
H̃+Ỹ = S̃ and S̃T H̃−1

+ S̃ = D̃, i.e. columns of S̃D̃−1/2 are conjugate with respect to

H̃−1
+ . If, in addition, matrix ST Y is symmetric positive definite, then also H̃+Y = S

and H̃Y = S hold.

Proof. From (3.10) we get H̃+ỹ = s̃ and also H̃+Ỹ = S̃ by (3.9) and Y T s̃ = STỹ = 0 in
view of l = l∗, r = r∗ by Lemma 3.1. Altogether, we have H̃+Ỹ = S̃ and from (3.7),
(3.1) and (3.2) we obtain

S̃T H̃−1
+ S̃ = S̃T Ỹ =

[
S̃

T
Ỹ S̃

T
ỹ

s̃T Ỹ s̃T ỹ

]
=

[
D̃ LSTỹ

s̃T Y R b̃

]
=

[
D̃ 0

0T b̃

]
= D̃.

If matrix ST Y is symmetric positive definite, we have LT = R by Corollary 3.1, thus
H̃+Y = SLT R−1 = S and similarly H̃Y = S by (3.9). 2

The following theorem shows that for a quadratic objective function and the choice l =
l∗, r = r∗, improvement of convergence is the best in some sense for linearly independent
direction vectors (‖.‖F denotes the Frobenius matrix norm).

Theorem 3.1. Let matrix H̃+ be given by (3.10) with l = r, matrix H̃ by (3.8) and f
be quadratic function f(x) = 1

2
(x − x∗)T G(x − x∗), x∗ ∈RN , with a symmetric positive

definite matrix G and suppose that columns of matrix S are linearly independent. Then
the recursive step described in Section 3.1 is well defined, l∗ = r∗ and the choice l = l∗

implies H̃+Y =S and minimizes value ‖G1/2H̃+G1/2 − I‖F as a function of l (or r).
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Proof. Matrix ST Y is symmetric positive definite by Lemma 2.2, therefore the recursive
step is well defined, l∗= r∗ and b̃ ≥ b∗>0 by Lemma 3.2 . Denoting z̃= G1/2s̃ = G−1/2ỹ,
W =G1/2H̃G1/2, W+ = G1/2H̃+G1/2 and T = W− I, we can rewrite (3.10) in the form

W+ = (1/|z̃|2)z̃z̃T + PWP = I + PTP, P = I − (1/|z̃|2)z̃z̃T , (3.12)

by |z̃|2 = b̃ > 0 and P 2 = P . As a special case, denoting by ŝ, ŷ, Ĥ+ vectors s̃, ỹ and
matrix H̃+ for l = r = l∗ and subsequently, ẑ = G1/2ŝ = G−1/2ŷ, Ŵ+ = G1/2Ĥ+G1/2, we
can rewrite update (3.10) for this choice of l, r in the form

Ŵ+ = I + P̂ T P̂ , P̂ = I − (1/|ẑ|2)ẑẑT , (3.13)

by |ẑ|2 = b∗ > 0 and P̂ 2 = P̂ .
Using Lemma 3.4, we get Ĥ+Y = S and H̃Y = S , which implies WZ = Z, or

TZ = 0, where Z = G1/2S = G−1/2Y . Using (3.6) with r = r∗ and arbitrary l, we get
s̃Tŷ = b∗, which yields z̃Tẑ = b∗ = ẑTẑ. In view of z̃ − ẑ = Z(l − l∗) by (3.1), we obtain

PP̂ =
(
I − z̃z̃T

b̃

)
P̂ = P̂ − z̃

b̃

(
z̃T − z̃T ẑ

b∗
ẑT

)
= P̂ − z̃

b̃

(
l − l∗

)T
ZT , (3.14)

which yields PP̂T = P̂ T by TZ = 0, thus PP̂T P̂P = P̂ T P̂ . Using this together with
(3.12), (3.13) and P̂ 2 = P̂ , we obtain

Tr
[
(Ŵ+−W+)(Ŵ+−I)

]
= Tr

[
(P̂ T P̂−PTP )P̂ T P̂

]
= Tr(T P̂T P̂−TPP̂T P̂P )= 0

by the fact that the trace of a product of two square matrices is independent of the order
of the multiplication. This immediately implies

‖W+ − Ŵ+‖2
F + ‖Ŵ+ − I‖2

F = ‖W+ − I‖2
F .

Since W+ = Ŵ+ holds for l= r= l∗, value ‖W+ − I‖F is minimized by l= r= l∗. 2

3.3 Approximate decomposition

If the last diagonal element b̃ of matrix S̃T Ỹ in (3.4) is not positive, this recursive step
of decomposition is unusable, since then update (3.10) need not preserve positive defi-
niteness of the VM matrix. This drawback can be eliminated by modifications of trans-
formation matrices R, L. Note that we consider here only the first recursive step, but it
can be easily generalized to other steps.

Transformation matrices R, L can be modified in the following way. We first set
l = l∗, r = r∗. If the resultant b̃ = b∗ is too small or the corresponding elements of
vectors STy, Y Ts are too different (the reason why not to decompose in this case is
discussed in Section 2.4), we replace the first elements of l, r by zero and try to find
vectors l, r satisfying b̃ > 0 with matrices S, Y without the first columns in the same
way. If this b̃ is again too small or vectors STy, Y Ts are too different, we try repeat this
process with matrices S, Y without the first and second columns, etc.

A side effect of transformations is deterioration of stability; thus sometimes, if a
contribution of transformation would be too small, it is better to omit a corresponding
part of the decomposition, see Section 3.4 for details.
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After the whole decomposition, we can use the BNS formula (1.4) with transformed
matrices S̃ = SLT , Ỹ = Y R, D̃, Ũ instead of S, Y , D, U , where Ũi,j = (S̃T Ỹ )i,j for
i ≤ j, Ũi,j = 0 otherwise. This gives update formula

H
(4)
+ = S̃ Ũ−TD̃ Ũ−1S̃T + ζ(I − S̃ Ũ−T Ỹ T )(I − Ỹ Ũ−1S̃T )

= SLT Ũ−TD̃Ũ−1LST + ζ(I − SLT Ũ−TRT Y T )(I − Y RŨ−1LST ).
(3.15)

3.4 Implementation

In this section we describe only the second selected testing method. We use the same
procedure for updating of basic low-order matrices ST Y , Y T Y as in Section 2. To de-
compose matrix ST Y with modifications mentioned in Section 3.3, we use the following
procedure. Conditions in steps (iv) and (v) were found empirically.

Procedure 3.1 (Decomposition)

Given: A dimension n̄ of matrix ST Y and σij =(ST Y )i,j , 1≤ i ≤ n̄, 1≤j ≤ n̄.

(i): Set n = 1 and for 1 ≤ i ≤ n̄, 1 ≤ j ≤ n̄ set Li,i = Ri,i = 1 and D̃i,i = σii,
Li,j = Ri,j = D̃i,j = 0 for i 6= j and further, Ũi,j = σij for i ≤ j, Ũi,j = 0
otherwise.

(ii): Set n := n +1. If n> n̄ return, otherwise set n0 := 0.

(iii): Set n0 :=n0+1 (index of the first transformed column of S,Y ). If n0 =n go to (ii),
otherwise set i=n0 and ∆=0.

(iv): Set ∆:=∆ +4n−i−1|σin−σni|/√σiiσnn . If σiiσnn <0 set ∆:=104∆. Set i := i + 1.
If i<n go to (iv). If (∆<10−7 and n0 <n− 1) or ∆>102 then go to (iii).

(v): With matrix [σij]j=n0,...,n
i=n0,...,n

instead of ST Y find vectors l∗ ∆
= l̂, r∗ ∆

= r̂ and scalar b∗,

using Lemma 3.1. If b∗<10−5 goto (iii), otherwise form vectors l, r, li = l̂i−n0+1,
ri = r̂i−n0+1 for n0≤ i <n, li = ri = 0 for 1≤ i <n0.

(vi): Set Ũn,n = D̃n,n = b∗, Ln,i = li, Ri,n = ri, 1≤ i < n, and [Ũ1,n, . . . , Ũn−1,n]T =

[Lij]j=1,...,n−1
i=1,...,n−1

((
[σij]j=1,...,n−1

i=1,...,n−1

)
r + [σ1n, . . . , σn−1,n]T

)
. Go to (ii).

We now state the method in details. To compute the direction vector in Step 5, we
use formula (3.15) and express H+g+ similarly as in (1.5):

H
(4)
+ g+ = ζg++ S̃

[
Ũ−T

(
(D̃ + ζỸ T Ỹ )Ũ−1S̃Tg+ − ζỸ Tg+

)]
− Ỹ

[
ζŨ−1S̃Tg+

]

= ζg+ + S
[
LT Ũ−T

(
ẼŨ−1LSTg+ − ζRT Y Tg+

)]
− Y

[
ζRŨ−1LSTg+

] , (3.16)

where Ẽ = D̃ + ζRT (Y T Y )R and in brackets we have low-order matrices. For simplicity,
we omit stopping criteria and contingent restarts when the direction vector is not descent.

Algorithm 3.2

Data: A number m ≥ 1 of VM updates per iteration and line search parameters ε1, ε2,
0<ε1 <1/2, ε1 <ε2 <1.

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H0 = I and
direction vector d0 = −g0 and initiate iteration counter k to zero.
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Step 1: Line search. Compute xk+1 = xk+tkdk, where tk satisfies (1.1), gk+1 = ∇f(xk+1),
sk = tkdk, yk = gk+1 − gk and ζk = sT

k yk/y
T
k yk. If k = 0 set Sk = [sk], Yk = [yk],

ST
k Yk = [sT

k yk], Y T
k Yk = [yT

k yk], compute ST
k gk+1, Y T

k gk+1 and go to Step 4.

Step 2: Matrix updating. If k > m delete the first column of Sk−1, Yk−1 and the first row
and column of ST

k−1Yk−1, Y T
k−1Yk−1. Using Procedure 2.1, form matrices Sk, Yk,

ST
k Yk, Y T

k Yk.

Step 3: Decomposition. Using Procedure 3.1, form matrices Lk,Rk, Ũk and D̃k.

Step 4: Direction vector. Compute dk+1 = −Hk+1gk+1 by (3.16), set k := k + 1 and
go to Step 1.

4 Numerical experiments

In this section, we demonstrate the influence of vectors corrections on the number of
evaluations and computational time, using the following collections of test problems:

[8] - Test 11 without problems 42, 48, 50, i.e. 55 problems, which are modified problems
from CUTE collection [3]; used N are given in Table 1, where problems, modified
in some way, are marked with ’*’,

[1] - termed Test 12 here, 73 problems, N = 1000,

[10] - Test 14, 22 problems, N = 1000,

[7] - Test 25 without problems 40, 45, 48, 57, 58, 60, 61, 67-70, 79, i.e. 70 problems,
N = 1000.

Problem N Problem N Problem N Problem N
ARWHEAD 5000 DIXMAANI 3000 EXTROSNB 1000 NONDIA 5000
BDQRTIC 5000 DIXMAANJ 3000 FLETCBV3* 1000 NONDQUAR 5000
BROYDN7D 2000 DIXMAANK 3000 FLETCBV2 1000 PENALTY3 1000
BRYBND 5000 DIXMAANL 3000 FLETCHCR 1000 POWELLSG 5000
CHAINWOO 1000 DIXMAANM 3000 FMINSRF2 5625 SCHMVETT 5000
COSINE 5000 DIXMAANN 3000 FREUROTH 5000 SINQUAD 5000
CRAGGLVY 5000 DIXMAANO 3000 GENHUMPS 1000 SPARSINE 1000
CURLY10 1000 DIXMAANP 3000 GENROSE 1000 SPARSQUR 1000
CURLY20 1000 DQRTIC 5000 INDEF* 1000 SPMSRTLS 4999
CURLY30 1000 EDENSCH 5000 LIARWHD 5000 SROSENBR 5000
DIXMAANE 3000 EG2 1000 MOREBV* 5000 TOINTGSS 5000
DIXMAANF 3000 ENGVAL1 5000 NCB20* 1010 TQUARTIC* 5000
DIXMAANG 3000 CHNROSNB* 1000 NCB20B* 1000 WOODS 4000
DIXMAANH 3000 ERRINROS* 1000 NONCVXU2 1000

Table 1. Dimensions for Test 11 – modified CUTE collection.

The source texts and reports can be downloaded from camo.ici.ro/neculai/ansoft.htm

(Test 12), from www.cs.cas.cz/~luksan/test.html (Test 11, Test 14 and Test 25).

For comparison, Table 2 contains results for the following limited-memory methods:
BNS – the BNS method, see [2], method from [14] based on conjugate directions (Algo-
rithm4.1) and our new Algorithm2.3 and Algorithm3.2. We have used m = 5 and the
final precision ‖g(x?)‖∞ ≤ 10−6.
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Test 11 Test 12 Test 14 Test 25
Method NFE Time NFE Time NFE Time NFE Time

BNS 81457 44.08 26615 4.60 25763 7.92 129951 30.91
Alg. 4.1 in [14] 63107 40.36 16816 3.22 19010 5.91 118042 30.41
Algorithm2.3 64842 31.19 24337 4.22 24316 7.23 105745 25.81
Algorithm3.2 68557 36.64 25206 4.60 21781 6.53 113890 28.42

Table 2. Comparison of the selected methods.
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