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Abstract

We study the volatility, i.e. influence of random changes in data sets to overall
separation/classification behavior of separators/classifiers. This is motivated by the fact, that simulated
data and true data from ATLAS experiment may differ, and a question arises what if separators or cuts
are optimized for simulated data, and then used for true data from the experiment. This behavior was
studied using simulated data modified by artificial distortions of known size. We found that even slight
change in data sets causes a little worse result than supposed but, surprisingly, even relatively large
distortions give then nearly the same results. Only truly great variations cause degradation of
separation quality of separator/classifier as well as of the cuts method.

Keywords:

Multivariate data, volatility, classification, signal-background separation, physics event data,
particle physics.



Volatility of selected separators/classifiers
wrt. data sets from field of particle physics

Marcel Jifina and FrantiSek Hakl

Contents
B Lo (o4 1017 () s RSP 3
Data Sets dESCIIPLION .....eeeiiiiiteiiiiiie ettt ettt e ettt e et e e sttt ee e saibbeeenbbeeeesaaeees 3
Seven variables data set “EISbieta 77 .........coociiiiiiiiieiee e 3
Data setsS MOAIfICAtION .........uvviiiiieie ittt ee e e e e st rreee e e e s sabbraeeeeeeeas 4
ClasSifiers/SEPArators USEA. .......ceueuieeriiiieeeitiee ettt ee ettt e ettt e e etteeesenbt e e eneteeeesneeeeeeneees 4
TINC ClaSSIFIET .. eeeeueieeee ettt sttt e e st e et e et 4
ININSU SEPATALOT ..ttt ettt ettt ettt e ettt e st e e et ee e sabtae e e bbeeeeeaaeaes 5
(O B8 I 1015311 1o o BRSSPSR 5
RESULLS ettt ettt ettt et e sttt e et e e e 6
| T1e 1 RS (0 )  FO USRS 10
ACKNOWIEAZEMENL.......eeiiiiiiiiiiiiiiec ettt ettt e e 11
| S (53 (<) 1 Lo PRSP 11



Introduction

This work is motivated by the fact, that simulated data and true data from ATLAS
experiment for exactly the same task or problem may differ. Than a question arises what if
separators or cuts are optimized for simulated data, and then used for true data from the
experiment.

The changes caused by such a difference in data we call a volatility here. We could also
use term‘ sensitivity”, but this term is already reserved to a different thing, to the ability of a
separation or a classification method to keep useful data usually called a signal as much as
possible. The sensitivity is thus the same as signal acceptance” or “signal efficiency” and is
depicted in a ROC graph on a vertical axis. The term volatility we borrowed from
econometrics where this notion describes the changes on a market, especially the market of
shares. When there is a low volatility, the market (in prices or volumes) changes slightly or in
a steady way, a high or a large volatility means an unstable market with large changes up and
down. In our use here analogically a low volatility means small changes in separator/classifier
-data characteristics, high volatility means large changes in these characteristics.

We found that for rather moderate differences in data mentioned above there is a low
volatility of classifiers as well as in CUTs method. It means that even slight change in data
sets causes a little worse result, compared to original ones, but, surprisingly, even relatively
large distortions give nearly the same results. Making variations in data larger we found that
only truly great variations cause degradation of separation quality of a separator/classifier as
well as of the cuts method. Thus the message of this study is that in any case results with true
data will be necessarily a little worse than for simulated data, but the change as large as ten
per cent in individual variables causes the same change as 0.001 per cent changes.

Data sets description

Seven variables data set “Elsbieta 7”°

Identification of hadronic decays will be the key to the possible Higgs boson discovery in
the wide range of the MSSM parameter space. The #/H/A — 1t and H* — 7v are promising
channels in the mass range spanning from roughly 100 GeV to 800 GeV. The sensitivity
increases with large tanf and decreases with rising mass of the Higgs boson. The H — 77
decays will give access to the Standard Model and light Minimal Supersymmetric Standard
Model Higgs boson observability around my = 120 GeV, with Higgs boson produced by
vector-boson fusion. The hadronic 7 identification is also very important in searching for
supersymmetric particles, particularly at high tanf values.

In this data as signal, we consider reconstructed candidates from tau decays in pp - W —
v and pp — Z — 7T events. As background, we consider candidates from QCD shower in
the same pp - W — v, pp = Z — 77 events and in QCD dijet events (sample with pTh"‘rd >

35 GeV).

In our test we used data tau-3Pwtoenu-0-200-GeV-Irn.dta and tau-3Pwtoenu-0-200-GeV-
tst.dta having 7 variables. We do not deal with them in detail here as it may be found in [2]
and we reproduce it verbatim in Table 1. This data uses three-prong candidates that are seeded
by the bary-center of three nearby tracks. At the same time, full scale from zero to 200 GeV
Higgs boson mass is used, i.e. no cuts are used.



Table 1. Data set description

For the classification procedure calorimetric observables as described in details i [4] are used. Sepa-
rately we optinuze identification procedure for single-prong ( v ;+) and three-prong ( 74;+) candidates.
The 7+ 1s seeded by the leading hadronic track at vertex (track 1 and ¢ at the vertex). The 744 15 seeded
by the bary-center of three nearby tracks. The calorimetric observables are calculated from energy depo-
sitton i cells within a distance from a seed of AR = 1.2,
The following calorimetric and tracking varables are used to build discriminating observables:
e Track transverse momenta of a leading track p7“** (or scalar sum of tracks transverse momenta in
case of 7y candidates)
e Electromagnetic radius of the v -candidate, 17, ,,
e Number of strips NV,

i
s

. strips with energy deposition above a certain threshold

e The width of energy deposition in staps. W, .

e The fracuon of the transverse energy deposited. [racivd o mntheii.i < AF < 1.2 radius with
respect to the total energy in the cone A /7 = (1.2, Cells belonging to all layers of the calonmeter
are used.

. . . chrgi AD

e The ratio of energy deposited 1n the hadronic calormeter /7, """ and track transverse momenta.
—+___ (or sum of transverse momenta in case of 14; candidates)

e The ratio of energy deposited 1n calorimeters ma anng (1.2 < AR < 0.4, with respect to the total

. , . chrafl M valo chvgH AJd el
energy deposited ina cone AN < (L4, LTI S prale gnd g R

The variables above are used erther directly or to build up 1n total 6 discriminating variables:
Nivines Wi fracE T, By, —Sm—. — L Classifiers use them separately.

sf foval

without any assumptions on the possible correlations.

Data sets modification

Each variable v;, i =1,...7 of the original data sets has been perturbated by adding a
random errors with normal distribution density. These errors has been produced
to have a zero mean value and variance equal to mean value of the original
variable (= wu(v;)) multiplied by a volatility parameters (= v,); we use this volatility
parameters set to 10"6, 10'5, w. 5, 0.140.05*k, k=0,...8, 1.0. In other words, we
substitute each original variable v; by the new one, v’; =v; + N(O,u(v;))*v, .

Classifiers/separators used

To make terminology clear, we use word classifier for tool that is able to recognize
samples, i.e. events of two or more kinds, classes. Separators discriminate between two
classes only. For our needs all devices work as separators as we have two classes, signal and
background only. Generally we can speak about classifiers.

In this study we used IINC classifier/separator, NNSU, the Neural Network with
Switching Units, and standard cuts method for this data as described in [2]

IINC classifier

IINC is the Inverse Indexes of Neighbors Classifier [3], [4]. This relatively simple method
was derived on the bases of estimating multifractal dimensions (Hurst exponents) and Zipfian
distribution. Here we use it with L; (Manhattan) metrics, as we found generally better




behavior than with L, (Euclidean) metrics. The software is available for noncommercial use at
http://www.marceljirina.cz/index.php?s=software&a=IINC0100 and can be run on Windows
as well as on LINUX machines.

NNSU separator

NNSU (Neural Network with Switching Units) is separator based on genetic optimization
of the general topology of neural networks. In addition, instead of classical neuronal units
(like in multilayer perceptron model) it exploits switching units dividing feature space into
disjoint subsets. We showed and broadly proved it’s convenient to HEP data separation (e.g.
in [2]). Distributed implementation of this separation tool is available on the site
http://www.cs.cas.cz/nnsu/ for all expert community.

CUTs method

In this study we used the same cuts method as in [2]; verbatim description follows in
Table 2 below.
Table 2. CUTs method description.

here for reference selection are as follows:
® Nlirips < 15;

¥ gtrips =
o Wiiims < 0.004;
e fracETl e < 0.4 formp (< 0.6 for Typ);
e A, < 0.08;

o L7 < 1k

i < .15 for 7 (< 0.25 for T3p).

It 1s obvious that the order of cuts in the sequence has no mmpact on the final acceptance.

The cuts-based approach uses a sequence of properly tuned cuts for individual vanables. The cuts used




Results

For this seven variables data set a typical ROC curve is depicted in Fig. 1 and 2.
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Fig. 1. ROC curve for data “Elsbieta 77, Fig. 2. ROC curve for data “Elsbieta 77, not
smoothed. smoothed, the left end detail. Red crosses
indicate individual events.

In this study we modified the testing set according to description above. We also tried to
modify the learning set the same way to show that there is no practical difference whether the
difference is made in the testing or in the learning set.

In Table 3 and Figs. 3 and 4 an influence of perturbation size (the variation) in data to the
minimal classification error. In Fig 3 it is seen that for small variations the minimal
classification error is nearly constant. Fig. 4 shows that starting with variation 0.1, i.e. 10 %
the error grows practically linearly with variation. It is also seen that there is no important
difference between variation in the testing set and in the learning set. Based on this finding,
tests with NNSU were limited to variation in the testing set only.

Table 3. Minimal classification errors for data with Gaussian noise added. IINC classifier.
Variation 0 1E-06 1E-05 0.0001 0.001 0.01 0.1 0.15
in LRN 18.97% 20.48% 20.48% 20.48% 20.48% 20.30% 20.77% 21.17%
in TST 18.79% 20.64% 20.64% 20.64% 20.59% 20.55% 20.70% 21.09%
Variation 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1
in LRN 22.12% 22.89% 23.73% 25.47% 25.92% 27.24% 27.13% 34.42%
in TST 21.68% 21.78% 22.95% 23.04% 23.28% 24.42% 24.85% 29.07%
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Fig. 3. The minimal classification error as a function of variation in logarithmic scale. [INC
classifier.
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Fig. 4. The minimal classification error as a function of variation in linear scale. IINC
classifier.

Table 4 and Figs. 5 and 6 show influence of perturbation size under the same conditions
as above for the NNSU separator. One can see nearly identical results and pictures as above,
i.e. for IINC classifier.

Table 4. Minimal classification errors for data with Gaussian noise added. IINC classifier.
Variation 1E-07 1E-06 1E-05 0.0001 0.001 0.01 0.1 0.15
NNSU 19.97% 20.68% 20.69% 20.68% 20.68% 20.67% 20.88% 20.88%

Variation 0.2 0.25 0.3 0.35 0.4 0.45 0.5 1
NNSU 21.83% 22.75% 23.53% 25.21% 26.13% 27.56% 27.45% 35.30%
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Fig. 5. The minimal classification error as a function of variation in linear scale. NNSU
separator.
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Fig. 6. The minimal classification error as a function of variation in linear scale. NNSU
separator.

For the same data there are ROC curves shown. Again for IINC and NNSU
separators/classifiers a different tint of red, orange or yellow and different tint of blue lines
correspond to data with variation in the testing set and with variation in the learning set,
respectively. To the uppermost (best) ROC curve corresponds the uppermost black diamond
that denotes results obtained by the CUTs method. A group of lines, part of them marked by
ellipsis in graph as well as in legend corresponds to variations between 0.000001 and 0.1 for
variation in the learning set as well as in the testing set. To these cases a second diamond for
CUTs method corresponds. The light blue and yellow ROC curves correspond to variations
large as 1, i.e. 100 % in learning and in the testing set respectively. It is apparent that that are
degenerated cases also corresponding to the lowermost diamond for the CUTs method
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Fig. 7. The ROC curves for different values of variation. Note red and blue lines
corresponding to LO-TO and TO-LO data, i.e. data without any variation. This case gives the
best results and also corresponds to uppermost black diamond denoting results obtained by the
CUTs method. Then note a group of lines, part of them marked by ellipsis in graph as well as
in legend. These lines correspond to variations between 0.000001 and 0.1 for variation in the
learning set as well as in the testing set. To these cases a second diamond for CUTs method
corresponds. The light blue and yellow ROC curves correspond to variations large as 1, i.e.
100 % in learning and in the testing set respectively. It is apparent that that are degenerated
cases also corresponding to the lowermost diamond for the CUTs method.

In Fig. 8 there are ROC curves for different variations of data in the testing set obtained
for the NNSU separator. It is easily seen that picture is nearly the same as in Fig. 7.

Note that in both figures, Fig. 7 and Fig. 8 there are black dotted lines and a thin black
line. These lines represent constant values of so-called quality factor Q =S/ /B . In fact if
data before separator has this ratio equal to Qj,, then data accepted as a signal has this ratio
equal to Qou = Q.0Oin - In cases depicted in Figs. 7 and 8 one can see that the best value of Q
can be reached 2.2 and even for data with variation 10 % there is a region on the ROC curve
with Q = 2. At the same time, with the CUTs method one can reach Q slightly above 1.5 only.
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Fig. 8. The ROC curves for different values of variation from zero to 100 %. Red line Odot0
correspond to data without any variation. This case gives the best results and also corresponds
to uppermost black diamond denoting results obtained by the CUTs method. Brown line
corresponds to variations between 0.000001 and 0.1 for variation in the testing set. To these
cases a second diamond for CUTs method corresponds. Two gold and yellow lines
correspond to variations 50 % and 100 % in the testing set respectively. It is apparent that that
are degenerated cases also corresponding to the lowermost diamond for the CUTs method and
that these results are very close to those obtained by IINC classifier.

Discussion

This study of the volatility, i.e. influence of random changes in data sets to overall
separation/classification behavior of separators/classifiers is motivated by the fact, that
simulated data and true data from ATLAS experiment may differ. We try to answer a question
what happens if separators or cuts optimized for simulated data are subsequently used for the
true data from the experiment.

We used simulated data and add some quantifiable and known amount of normal noise to
all data variables. Dr. Elsbieta Richter-Was provided simulated data; data is the same as
described and studied in several previous reports and in ATLAS note [2]

Our results can be summarized as follows:

¢ Even slight amount of noise (0.000001, i.e. 0.0001 per cent) in data sets causes a little
worse result than without noise (20.64% vs. 18.79% for minimal
separation/classification error of the IINC classifier that uses fractal nature of data, and
20.68% vs. 19.97% for NNSU that uses genetic optimization and clustering.
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e This small difference remains nearly constant until 10 per cent noise; see the upper
part of Table Z and Fig. A. It means that even relatively large distortions give nearly
the same results in terms of separation quality.

e Then, i.e. for noise larger than 10 %, the minimal classification error grows nearly
linearly with noise as depicted in Fig. B until large degradation for 100 % noise. Even
for this big noise the classification error is equal to 30 or 34 percent for noise in the
learning and testing set, respectively.

From these simple facts one can conclude that any small deviation from data used for
setting the separating method (learning and testing or for setting cuts in CUTs method) causes
minor degradation of results, but, surprisingly, even for relatively large (in the sense of 10 %)
deviation in data this degradation remains the same. Only truly great variations cause
degradation of separation quality of separator/classifier as well as of the cuts method.

We suppose that by application of noise with Gaussian distribution that has unlimited tails
some artificial outliers may eventually appear. Outliers cause a small degradation of results as
reported. We suppose that data processing procedures used before are designed so that
absolute values of data items are limited and thus outliers are not contained in experimental
data in this stage of processing.

We can conclude that separators used here and tuned according to simulated data are
robust to relatively large differences between simulated and measured data from the ATLAS
experiment.
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