
A Portable Read-Copy-Update Algorithm

Podzimek, Andrej
2011

Dostupný z http://www.nusl.cz/ntk/nusl-55980

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 20.05.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-55980
http://www.nusl.cz
http://www.nusl.cz


Andrej Podzimek A Portable Read-Copy-Update Algorithm

A Portable Read-Copy-Update Algorithm

Post-Graduate Student:

MGR. ANDREJ PODZIMEK

Supervisor:

ING. LUBOMÍR BULEJ, PH.D.
Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2
182 07 Prague 8, CZ

Institute of Computer Science of the ASCR, v. v. i.
Pod Vodárenskou věžı́ 2

182 07 Prague 8, CZ

podzimek@cs.cas.cz bulej@cs.cas.cz

Field of Study:

Software Systems

Abstract

RCU is a synchronization mechanism that

can increase concurrency in parallel algorithms,

improving scalability in comparison to mutual

exclusion. RCU provides asymmetric synchroni-

zation of concurrent writers and readers sharing

a data structure. Unlike mutual exclusion primi-

tives, RCU can avoid expensive memory ope-

rations on the most frequent code paths, boos-

ting performance even on uniprocessors. Virtu-

ally all contemporary RCU implementations run

in the Linux kernel and strongly depend on its

internals.

Our work contributes a novel RCU algorithm

based on easily portable foundations, not bound

to any particular kernel architecture. We imple-

mented and benchmarked our algorithm in the

UTS kernel used by Solaris-based systems. We

compared our RCU algorithm to a readers-writer

lock and to a portable, but feature-constrained

RCU algorithm called QRCU. Our benchmarks

suggest that the novel algorithm can outperform

both readers-writer locks and QRCU on current

SMP systems.

1. RCU Essentials

Read-Copy-Update (RCU) is a means of communi-

cation among three types of entities: readers, writers and

reclaimers [1].

Readers access a shared data structure without modi-

fying it and can run in parallel with other readers and

writers, guaranteed to never block when entering or lea-

ving their critical sections. Most RCU implementations

do not require the readers to use atomic instructions or

other expensive operations.

Writers are a specific type of readers that can also mo-

dify the shared data. Writers cooperate with the RCU

mechanism to provide other readers with an illusion of

data integrity, i.e. readers will not observe concurrent

changes to the shared data during their critical sections.

This is achieved by copying the shared data structure,

making changes to the copy and finally replacing the

pointer to the original data structure with a pointer to

the new one atomically. As long as readers adhere to

certain data access rules, they always observe a consi-

stent state of the data structure. RCU neither supports

nor constrains concurrency among writers; they have to

synchronize their operations by means external to RCU.

Deallocation of old versions of protected data has to

be postponed, so that readers accessing them can finish

their work. The time needed for all potential readers to

stop using the old data structure (no longer accessible to

new emerging readers) is called a grace period. A mo-

ment when a potential reader does not access any data

structure protected by RCU is called a quiescent state.

A grace period elapses when all potential readers go

through at least one quiescent state. Grace period de-

tection is the key part of all RCU implementations.

Reclaimers deallocate outdated data structures that had

been made inaccessible to readers. It is necessary to wait

for at least one grace period before the deallocation can

be done. Writers can use the RCU mechanism to block

for at least one grace period, becoming reclaimers af-

terwards. Alternatively, they can proceed immediately,

asking the RCU mechanism to perform the deallocation

when appropriate. Our novel RCU algorithm supports

both of these options.

2. The RCU Algorithm for UTS

The cornerstone RCU algorithms in the Linux kernel are

strongly bound to features specific to Linux, such as ti-

mer interrupt handling on all processors. In the UTS ker-

nel, timer interrupts are only handled by a subset of avai-

lable processors, which may only include one processor

on UMAmachines [2]. This fundamental differencema-

kes porting of the key Linux RCU algorithms to UTS or

PhD Conference ’11 110 ICS Prague



Andrej Podzimek A Portable Read-Copy-Update Algorithm

other kernels technically infeasible. The design of our

novel RCU algorithm strives to avoid technical depen-

dencies related to one particular kernel.

The key idea behind our algorithm can be illustrated

on a “toy” RCU algorithm presented by Paul McKen-

ney [3]: Writers context-switch themselves to each avai-

lable processor before they become reclaimers. Since

readers run with disabled preemption, the writers’ be-

havior guarantees that at least one grace period must

have elapsed. Presumably, this algorithm is unusable in

practice. First, its SMP scalability would be extremely

poor. Second, it does not support non-blocking writers

and delayed batched resource reclamation.

Based on the principle mentioned above, we designed

a more scalable algorithm where forced rescheduling is

only used as the last resort when other means of grace

period detection take too long to complete. Our novel al-

gorithm differs from the trivial example above in a num-

ber of ways. First, all grace period detection requests are

batched and handled centrally by one detector thread,

which avoids the need to reschedule each writer on each

processor on each request. Second, the central detector

thread avoids forced migration in most cases, at the cost

of slightly higher overhead on the readers’ side. Third,

most of the advanced RCU features, such as asynchro-

nous reclamation, are implemented.

A brief note on notable characteristics of our algorithm

follows. Readers do not use any expensive atomic in-

structions. Readers only execute memory barriers when

intensive grace period detection takes place; they ne-

ver do so in the absence of grace period requests. Na-

turally occurring quiescent states (context switches, idle

processors) are observed to reduce the grace period de-

tection overhead even further. As long as all read-side

critical sections take a bounded amount of time (which

can be required and relied upon in a kernel environ-

ment), grace period duration is also bounded. Asyn-

chronous reclamation requests are handled in efficient

batches by the same processor on which they were crea-

ted, so that a warm cache can be exploited.

3. Evaluation

To verify that our RCU algorithm for the UTS kernel

leads to performance improvements typical for well-

known RCU implementations, we created a benchmar-

king harness that performs a series of operations on

a non-blocking hash table. This artificial workload si-

mulates a kernel algorithmmanipulating a data mapping

under heavy stress. The same workload (sequences of

hash table operations performed by multiple threads in

parallel) has been benchmarked with four different syn-

chronization mechanisms protecting the hash table. We

ran our benchmark on a variety of SPARCv9 and x86-64

SMP machines.

511:1 127:1 31:1 7:1 1:1

RCUc 1 1.04 1.06 1.12 1.27

RCUs 1.03 1.23 1.48 2.23 5.24

QRCU 2.33 2.33 2.47 3.06 4.55

DRCU 2.86 4.21 8.95 N/A N/A

Table 1: Relative average running time

Selected benchmark results (from an x86-64 machine

with 8 processors) are shown in Table 1. Relative run-

ning times of our multithreaded workload are displayed,

normalized so that the shortest measured result takes one

time unit. Columns represent ratios between frequencies

of read-only and read/write operations on the hash table.

Rows represent synchronization mechanisms. RCUs

and RCUc denote our algorithm with its synchronous

and asynchronous reclamation handling API, respecti-

vely. QRCU denotes the feature-constrained RCU al-

gorithm [4] ported for the sake of comparison. DRCU

(“dummy RCU”) stands for an implementation of the

RCU API using a plain readers-writer lock.

Since RCU is designed for read-mostly workloads,

significant improvements over DRCU under high rea-

ders/writers ratios are not surprising. Interestingly, our

novel algorithm performed relatively well even under

low readers/writers ratios.

References

[1] P. E. McKenney, Exploiting Deferred Destruction:

An Analysis of Read-Copy-Update Techniques

in Operating System Kernels. PhD thesis,

OGI School of Science and Engineering at

Oregon Health and Sciences University, 2004.

http://www.rdrop.com/users/paulmck/RCU/RCU

dissertation.2004.07.14e1.pdf.

[2] R. McDougall and J. Mauro, Solaris internals: So-

laris 10 and OpenSolaris kernel architecture. So-

laris Series, Sun Microsystems Press/Prentice Hall,

2007.

[3] P. E. McKenney and J. Walpole, “What is RCU, fun-

damentally?.” http://lwn.net/Articles/262464/, De-

cember 2007.

[4] P. E. McKenney, “Using Promela and Spin to verify

parallel algorithms.” http://lwn.net/Articles/243851/

August 2007.

PhD Conference ’11 111 ICS Prague


