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Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).
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Abstract

In dynamic classifier aggregation, the fuzzy

integral is used often as an aggregation operator.

As the fuzzy measure of the integral, Sugeno λ-
measure (which belongs to a more general class

of ⊥-decomposable fuzzy measures) is used

most often. However, there is usually no explicit

reason why this particular measure is used, and

moreover, the measure cannot model the simila-

rities of the individual classifiers in the team. In

this paper, we show that ⊥-decomposable me-

asures are not appropriate for classifier combi-

ning, and we introduce the Interaction-Sensitive

Fuzzy Measure (ISFM), designed specifically

for classifier combining. The experiments with

3 different classifier systems on 26 benchmark

datasets show that ISFM outperforms the Su-

geno λ-measure in most cases.

1. Introduction

This paper is an extension of [1], in which we introduced

the Interaction-Sensitive Fuzzy Measure. In this paper,

we discuss the ISFM in more detail and perform more

experiments.

Classifier combining methods are a popular tool for im-

proving the quality of classification. Instead of using just

one classifier, a team of classifiers is created, and the

predictions of the team are combined into a single pre-

diction [2–4]. There are two main approaches to classi-

fier combining: classifier selection (where a single clas-

sifier from the team is selected for prediction according

to some criterion) and classifier aggregation (where the

outputs of the classifiers are aggregated into a single pre-

diction). Classifier combination can be either static, i.e.,

the combining process is the same for all patterns, or dy-

namic, where the combination process is adapted to the

currently classified pattern [5–9].

One of the popular aggregation operators is the fuzzy in-

tegral [2, 10–12]. The fuzzy integral aggregates the out-

puts of the individual classifiers in the team with respect

to a fuzzy measure, representing the classification confi-

dences. Fuzzy measure is a generalization of the additive

probabilistic measure, where the additivity is replaced

by a weaker condition, monotonicity – this gives us a

tool which can model interactions between different ele-

ments of the fuzzy measure space. However, due to the

lack of additivity, the fuzzy measure needs to be defined

on all subsets of the fuzzy measure space, resulting in

2r defining values for finite cases, where r is the size of
the universe. There are several approaches to overcome

this weakness: symmetric fuzzy measures [10], for which

the value of the measure depends only on the num-

ber of elements in the argument, and ⊥-decomposable
fuzzy measures, including Sugeno λ-measure [10, 11],

for which the fuzzy measure values are computed from

the fuzzy measure values for the singletons (called fuzzy

densities) using a fixed t-conorm ⊥. However, since the
value of a set of elements is computed only using the

fuzzy densities of its elements and a fixed⊥, the simila-

rity of the elements in the set is not taken into account,

and the ability to model interactions between different

elements of the fuzzy measure universe is limited.

In the literature of classifier aggregation, fuzzy integral

is usually used with Sugeno λ-measure. There is usually

no explicit reason for the choice of this measure other

than its simplicity. Sugeno λ-measure is a special case of

a⊥-decomposable fuzzymeasure, and as such, it cannot
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model similarities between the individual classifiers, and

thus the contribution of using fuzzy integral is unclear.

In classifier aggregation, we usually try to create a team

of classifiers that are not similar. This property is called

diversity [13]. There are many methods for building a

diverse team of classifiers [3,14–16]; however, the team

always contains classifiers that are similar. If we use

the fuzzy integral with a symmetric or ⊥-decomposable

fuzzy measure, we are not able to incorporate the diver-

sity into the measure (and thus to the aggregation pro-

cess), because the fuzzy measure of a union of two sets

is a function only of the fuzzy measures of the two sets,

regardless of the similarity of the elements in the sets.

To overcome this weakness, we have introduced an

Interaction-Sensitive Fuzzy Measure (ISFM) [1], which

is defined using the fuzzy measure values for the sin-

gletons (fuzzy densities), and the similarities of the ele-

ments in the universe. If the fuzzy measure space corre-

sponds to the team of classifiers, the fuzzy measure

incorporates both the classification confidence (fuzzy

densities), and the diversity of the team of classifiers

(mutual similarities of the classifiers). Using ISFM in

fuzzy integral as an aggregation operator in classifier

aggregation, the aggregation process involves all the im-

portant properties: the predictions of the classifiers, the

classification confidences, and the diversity of the team.

Our preliminary experiments with ISFM used with the

Choquet integral in Random Forest ensembles have

shown that ISFM outperforms Sugeno λ-measure [1]. In

this paper, the results of a more profound investigation

are reported, and the experiments have been extended to

cover the Sugeno integral and also other classification

models, namely ensembles of k-Nearest Neighbor clas-

sifiers [17] created by bagging [14] and ensembles of

Quadratic Discriminant Classifiers [17] created by the

Multiple feature subset method [18].

The paper is structured as follows. In Section 2, we brie-

fly summarize the formalism of classification, classifi-

cation confidence, and classifier combining. Section 3

describes fuzzy measures, fuzzy integrals, and their use

in classifier aggregation. In Section 4, we introduce the

ISFM, and in Section 5, we experimentally compare the

performance of the ISFM to the performance of the Su-

geno λ-measure. Section 6 then summarizes the paper.

2. Classifier Combining

In this section, we recall the formalism of dynamic clas-

sifier combining, proposed in [5]. Throughout the rest of

the paper, we use the following notation. Let X ⊆ Rn

be a n-dimensional feature space, let C1, . . . , CN ⊆ X ,
N ≥ 2 be disjoint sets called classes. A pattern is a

tuple (Mx, c<x), where Mx ∈ X are features of the pattern,

and c<x ∈ {1, ..., N} is the index of the class the pattern
belongs to. The goal of classification is to determine the

class a given pattern belongs to, i.e., to predict c<x for

unclassified patterns. We assume that for

every Mx ∈ X , there is a unique classification c<x, but
since it is usually not known, we will sometimes refer to

a pattern only as Mx ∈ X .

Definition 1 The term classifier denotes a map-

ping φ : X → [0, 1]N , i.e., for Mx ∈
X , φ(Mx) = (γ1(Mx), . . . , γN (Mx)). The components

(γ1(Mx), . . . , γN (Mx)) are called degrees of classification

(d.o.c.) to each class.

The d.o.c. to class Cj expresses the predicted extent to

which the pattern belongs to class Cj . The prediction

of c<x for an unknown pattern Mx is done by converting

the continuous d.o.c. of the classifier into a crisp output

φ(cr)(Mx) = argmaxi=1,...,N γi(Mx) if there are no ties, or
arbitrarily as φ(cr)(Mx) ∈ argmaxi=1,...,N γi(Mx) in the

case of ties.

2.1. Classification Confidence

In addition to the classifier output (the d.o.c.), which pre-

dicts to which class a pattern belongs, we will work with

the confidence of the prediction, i.e., the extent to which

we can “trust” the output of the classifier.

Definition 2 Let φ be a classifer and κφ : X → [0, 1].
Then κφ is called a confidence measure and for Mx ∈ X ,
κφ(Mx) is called classification confidence of φ on Mx.
A confidence measure is called static if it is a constant

of the classifier, and dynamic otherwise.

The higher the trust in the classification, the closer

κφ(Mx) is to 1. Static confidence measures evaluate the

classifier as a whole and they are usually computed

on a validation set after the classifier is trained. The

methods include accuracy, precision, sensitivity, resem-

blance, etc. [17, 19]. For example, the Global Accuracy

confidence measure is defined as:

κ
(GA)
φ =

�
(<y,cy)∈V

I(φ(cr)(My) = c<y)

|V| , (1)

where V ⊆ X × {1, . . . , N} is the validation set and I
denotes the indicator operator, defined as I(true) = 1,
I(false) = 0 (we will use the notation in the rest of the

paper).
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Dynamic confidence measures [5–9, 20] adapt to the

currently classified pattern and predict the local quality

of the classification for the particular pattern (Mx, c<x). An
example of a dynamic confidence measure is the Eucli-

dean Local Accuracy (ELA):

κ
(ELA)
φ (Mx) =

�
(<y,cy)∈V(<x)

I(φ(cr)(My) = c<y)

|V(Mx)| , (2)

where V(Mx) ⊆ V is the set of validation patterns belon-

ging to some kind of neighborhood of Mx (for example

k nearest neighbors under Euclidean metric).

2.2. Classifier Systems

In classifier combining, instead of using just one classi-

fier, a team of classifiers is created (sometimes called an

ensemble of classifiers), and the team is then aggrega-

ted into one final classifier. If we want to utilize classifi-

cation confidence in the aggregation process, each clas-

sifier must have its own confidence measure defined.

Definition 3 Let r ∈ N, r ≥ 2. Classifier team is

a tuple (Γ,K), where Γ = {φ1, . . . , φr} is a set of clas-

sifiers, and K = {κφ1 , . . . , κφr
} is a set of correspon-

ding confidence measures.

If a pattern Mx is submitted for classification, the team

of classifiers returns information of two kinds – outputs

of the individual classifiers (a decision profile [21]), and

classification confidences of the classifiers on Mx (a con-

fidence vector).

Definition 4 Let (Γ,K) be a classifier team and let Mx ∈
X . Then the decision profile of (Γ,K) on Mx is a matrix

Γ(Mx) ∈ [0, 1]r×N ,

Γ(�x) =











φ1(�x)
φ2(�x)

.

.

.

φr(�x)











=











γ1,1(�x) γ1,2(�x) . . . γ1,N (�x)
γ2,1(�x) γ2,2(�x) . . . γ2,N (�x)

. . .

γr,1(�x) γr,2(�x) . . . γr,N (�x)











,

(3)

and the confidence vector of (Γ,K) on Mx is a vector

K(Mx) ∈ [0, 1]r,

K(Mx) =




κφ1(Mx)
κφ2(Mx)

...

κφr
(Mx)


 (4)

After the pattern Mx has been classified by all the classi-

fiers in the team, and the confidences have been com-

puted, these outputs have to be aggregated using a team

aggregator. A classifier team with an aggregator will be

called a classifier system, which can be also viewed as

a single classifier.

Definition 5 Let (Γ,K) be a classifier team, and let A :
[0, 1]r×N × [0, 1]r → [0, 1]N . The triple S = (Γ,K,A)
is called a classifier system and A is called a team ag-

gregator. We define an induced classifier of S as a clas-

sifier Φ:

Φ(Mx) = A(Γ(Mx),K(Mx)) = (γ1(Mx), . . . , γN (Mx)).

An example of an aggregation operator is the mean va-

lue, which defines the aggregated d.o.c. to class j as the
arithmetic mean of the d.o.c. to class j given by the in-

dividual classifiers in the team:

γj(Mx) =

�
i=1,...,r

γi,j(Mx)

r
. (5)

We can distinguish three types of classifier systems:

confidence-free (which do not utilize the classification

confidence at all), static (which use only static classi-

fication confidence), and dynamic (which use dynamic

classification confidence, i.e., the aggregation is adap-

ted to a particular pattern). In this paper, we are mainly

interested in dynamic classifier systems.

Many aggregation operators have been studied in the li-

terature: simple arithmetic operations (voting, sum, ma-

ximum, minimum, mean, weighted mean, weighted vo-

ting, product, etc., [21]), probability-based approaches

(e.g., product rule [21], Dempster-Shafer fusion [21]),

and fuzzy logic methods (fuzzy integral [12], decision

templates [12, 21]). Our key interest in this paper lies in

studying dynamic classifier aggregation using the fuzzy

integral, which is described in the following section.

3. Fuzzy Integral, Measures and Similarity

Fuzzy integral [10, 11, 22] is an aggregation operator,

based on a fuzzy measure (sometimes called capacity),

which is a generalization of the additive measure, such

that the additivity is replaced by a weaker condition

– monotonicity. Several definitions of a fuzzy integral

exists in the literature – among them, the Choquet inte-

gral and the Sugeno integral are used most often. In this

section, we briefly summarize the basic definitions, and

we show how the fuzzy integral can be used in classifier

aggregation. For simplicity reasons, we restrict oursel-

ves to the discrete case, and to functions in [0, 1].
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Definition 6 A fuzzy measure µ on a set U =
{u1, . . . , ur} is a function on the power set of U , µ :
P(U)→ [0, 1], such that:

1. µ(∅) = 0, µ(U) = 1 (boundary conditions)

2. A ⊆ B ⇒ µ(A) ≤ µ(B) (monotonicity)

As the universe U will correspond to the set of classi-

fiers in the team, we use r to denote the universe size

(cf. Sec. 3.1). We can now define the Choquet integral,

which is a generalization of the classical probabilistic in-

tegral (for additive measures, it reduces to the Lebesgue

integral, i.e., weighted mean in the discrete case), and

the Sugeno integral. As there is no generally accepted

definition of a fuzzy integral [10,23], we restrict oursel-

ves to the Choquet and Sugeno integrals in the rest of

the paper.

We will use the following notation. Let f : U =
{u1, . . . , ur} → [0, 1], f(ui) = fi, i = 1, . . . , r. Then
< · > indicates that the indices have been permuted,

such that 0 = f<0> ≤ f<1> ≤ · · · ≤ f<r> ≤ 1. Mo-

reover, A<i> = {u<i>, . . . , u<r>} denotes the set of

of elements of U corresponding to the (r − i) highest
values of f .

Definition 7 Let µ be a fuzzy measure on U . Then the

Choquet integral of a function f : U → [0, 1], f(ui) =
fi, i = 1, . . . , r, with respect to µ is defined as:

(C)

�
fdµ =

r�

i=1

(f<i> − f<i−1>)µ(A<i>). (6)

Definition 8 Let µ be a fuzzy measure on U . Then the

Sugeno integral of a function f : U → [0, 1], f(ui) =
fi, i = 1, . . . , r, with respect to µ is defined as:

(S)

�
fdµ =

r
max
i=1

min(f<i>, µ(A<i>)). (7)

3.1. Fuzzy Integral in Classifier Aggregation

In classifier aggregation, the universe U corresponds to

the set of classifiers Γ in the team, i.e., U = Γ =
{φ1, . . . , φr}. For Mx ∈ X , the individual columns of the

decision profile Γ(Mx) are integrated using the fuzzy in-

tegral, i.e., the aggregated d.o.c. to class j is defined as

γj(Mx) =

�
Γ∗,jdµ, (8)

where
#
is a fuzzy integral, Γ∗,j is the j-th column of Γ

(d.o.c. to class Cj ), and µ is a fuzzy measure on Γ. The

fuzzy measure µ represents the importance of a particu-

lar set of classifiers used in the integration (µ(A<i>)
represents the importance of the classifiers correspon-

ding to the (r − i) highest d.o.c.). Usually, µ somehow

depends on the confidence vector K(Mx).

3.2. Important Types of Fuzzy Measures

The behavior of the fuzzy integral depends heavily on

the considered fuzzy measure. As the definition of a

fuzzy measure is very general, it gives us a lot of free-

dom when defining a fuzzy measure. However, to define

a general fuzzy measure in the discrete case, we need to

define all its 2r values, which is usually very complica-

ted. To overcome this weakness, approaches which do

not need all the 2r values have been developed [10, 11].

3.2.1 Additive Measures:

Definition 9 Fuzzy measure µ on U is called additive,

if µ(A ∪B) = µ(A) + µ(B) for disjoint A,B ⊆ U .

Additive measures correspond to the classical probabi-

listic measures. The measure is defined only using the

values for the singletons, µ({ui}), i = 1, . . . , r (called
fuzzy densities), and all the remaining values are compu-

ted using the additivity condition. However, such mea-

sure cannot model interaction between the elements of

the fuzzy measure space (which in particular implies

that the diversity of the team of classifiers cannot be ta-

ken into account in the aggregation). Choquet integral

with an additive measure reduces to the weighted mean.

3.2.2 Symmetric Measures:

Definition 10 Fuzzy measure µ on U is called symmet-

ric, if for A,B ⊆ U , |A| = |B| ⇒ µ(A) = µ(B),
i.e., its value depends only on the cardinality of the ar-

gument, µ(A) = g(|A|).

We can choose any nondecreasing function g, such that

g(0) = 0 and g(r) = 1 to model the importance of

a set of r elements. If a symmetric measure is used in

Choquet integral, the integral reduces to the Ordered

Weighted Average operator [10]. However, symmetric

measures assume that all the classifiers have the same

importance, and thus not only symmetric fuzzy mea-

sures do not take similarities of the classifiers into ac-

count, but moreover, the resulting aggregation scheme is

confidence-free, i.e., the classificatoin confidence does

not influence the aggregation. As we deal with dynamic

classifier systems only, we do not take symmetric mea-

sures into account in the rest of the paper.
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3.2.3 ⊥-decomposable Measures:

Definition 11 Let µ be a fuzzy measure on U and let ⊥
be a t-conorm. Then µ is called ⊥-decomposable, if for

disjoint A,B ⊆ U ,

µ(A ∪B) = µ(A) ⊥ µ(B). (9)

⊥-decomposable measures need only the r fuzzy densi-
ties and all the other values are computed using the

formula (9). Particular cases of ⊥-decomposable fuzzy

measures are additive measures (⊥ being the bounded

sum), and the Sugeno λ-measure [10, 11], defined as

µ(A ∪B) = µ(A) + µ(B) + λµ(A)µ(B), (10)

for disjoint A,B ∈ U , and some fixed λ > −1. The va-
lue of λ is computed as the unique non-zero root greater

than −1 of the equation

λ+ 1 =
�

i=1,...,r

(1 + λµ({ui})), (11)

if the densities do not sum to 1. If they do sum to 1,
λ = 0 and the fuzzy measure is additive.

The Sugeno λ-measure is used most often in classi-

fier aggregation using fuzzy integral (with the fuzzy

densities corresponding to the classification confiden-

ces, µ({ui}) = κφi
(Mx)). However, its use is usually not

supported by any arguments and it is basically selected

because of its simplicity.

A strong weakness of any ⊥-decomposable measure

(and Sugeno λ-measure in particular) is that it cannot

model the interaction (similarities) between the classi-

fiers, because the fuzzy measure value of a set of two

(or more) classifiers is fully determined by the formula

(9) with a fixed ⊥. Therefore, the diversity of the team

of classifiers cannot be taken into account in the aggre-

gation (as in the case of additive measures).

To overcome the weaknesses of the methods presented

above, we have defined an Interaction-Sensitive Fuzzy

Measure (ISFM) [1], which is defined not only using the

fuzzy densities, but also using mutual similarities of the

classifiers in the team. The method is described in the

following section, but prior to that, we formally define

the concept of a similarity [24].

3.3. Similarity of Classifiers

Definition 12 Let ∧ be a t-norm and let S : U × U →
[0, 1] be a fuzzy relation. S is called a similarity with

respect to ∧ if the following holds ∀a, b, c ∈ U:

• S(a, a) = 1 (reflexivity)

• S(a, b) = S(b, a) (symmetry)

• S(a, b) ∧ S(b, c) ≤ S(a, c) (transitivity w.r.t. ∧)

In the context of classifier combining, we will work with

similarity of classifiers in particular, which, for classi-

fiers φk, φl, will be measured empirically as the propor-

tion of equal crisp predictions on the validation set V ,

S(φk, φl) =

�
(<y,cy)∈V

I(φ
(cr)
k (My) = φ

(cr)
l (My))

|V| . (12)

The relation (12) is a similarity with respect to

Łukasiewicz t-norm ∧L, but it is not a similarity with

respect to standard or product t-norms ∧S , ∧P .

4. Interaction-Sensitive Fuzzy Measure and its Use

in Fuzzy Integral

Methods for constructing a team of classifiers usually

try to create a team which is both both accurate and di-

verse [2, 3, 13]. Diversity of the classifiers in the team is

a key property in classifier combining, since if the clas-

sifiers are very similar, the classifier combining cannot

improve the classification quality.

Fuzzymeasures represent a convenient tool to work with

the diversity of the team. As µ(A<i>) are computed for

i = r, . . . , 1, i.e., in i-th step, classifier φ<i> is added to

the set of classifiers A<i+1> = {φ<i+1>, . . . , φ<r>},
we can influence the increase of the fuzzy measure –

if φ<i> is similar to the classifiers in A<i+1>, the in-

crease in the fuzzy measure should be small (since the

importance of the set A<i> should be similar to the im-

portance of the set A<i+1>), and if φ<i> is not similar

to the classifiers in A<i+1>, the increase of the fuzzy

measure should be large.

⊥-decomposable fuzzy measures (and in particular ad-

ditive measures and Sugeno λ-measure) cannot model

such interactions between the classifiers, because they

are defined only using the fuzzy densities and a fixed

⊥. Therefore, we propose an Interaction-Sensitive Fuzzy
Measure (ISFM), which incorporates the similarities of

the classifiers in the team, defined using the following

recursive definition.

Definition 13 Let U = {u1, . . . , ur} be a universe, let

S be a similarity w.r.t. a t-norm ∧, si,j = S(ui, uj),
let κi ∈ [0, 1], i = 1, . . . , r denote the importance

(weight) of ui, and let A<i> = {u<i>, . . . , u<r>},
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A<r+1> = ∅, where < · > denotes index ordering ac-

cording to some f : U → [0, 1], such that 0 ≤ f<1> ≤
· · · ≤ f<r> ≤ 1.

Let .µ : P(U)→ R+, such that

.µ(∅) = 0 (13)

.µ(A<r>) = .µ({u<r>}) = κ<r> (14)

.µ(A<i>) = .µ({u<i>, . . . , u<r>}) = (15)

= .µ(A<i+1>) + (1 − r
max
k=i+1

s<i>,<k>)κ<i>

(16)

for i = r − 1, . . . , 1, (17)

and ∀X ⊆ U , X �= A<i>, i = 1, . . . , r,

.µ(X) = .µ(A<q>), (18)

where q = min{i = r + 1, . . . , 1|A<i> ⊆ X}.

The mapping µ(I) : P(U)→ [0, 1], defined as

µ(I)(X) =
.µ(X)

.µ(A<1>)
=

.µ(X)

.µ(U) , (19)

is called an Interaction-Sensitive Fuzzy Measure

(ISFM) on U with respect to f .

For the fuzzy integration itself, only the values for

A<i>, i = 1, . . . , r (15-17) are needed, the remaining

values (18) represent an extension to the whole power

set and are needed only for µ(I) to be properly defined.

(19) represents a normalization of .µ to [0,1].

The definition is general and can be used also in other

applications than classifier combining. In classifier com-

bining, U = Γ is the set of classifiers, κi = κφ(Mx) are
the classification confidences, f = Γ∗,j is the j-th co-

lumn of the decision profile, and S denotes the similarity

of classifiers (12). The following proposition shows that

µ(I) is well-defined.

Proposition 1 µ(I) is a fuzzy measure on U .

Proof: The boundary conditions follow directly from

the definition of µ(I). Let X ⊆ Y ⊆ U . Then

qX = min{i = r + 1, . . . , 1|A<i> ⊆ X} ≥ qY =
min{i = r+1, . . . , 1|A<i> ⊆ Y }, and thus, µ(I)(X) =
µ(I)(A<qX>) ≤ µ(I)(A<qY >) = µ(I)(Y ), which pro-

ves the monotonicity.

In (16), maxrk=i+1 s<i>,<k> incorporates the diver-

sity of the team of classifiers into the fuzzy measure.

The following proposition shows that if for some i,

the i-th classifier is totally similar to some other clas-

sifier in A<i+1>, then µ
(I) does not increase, and if it is

totally unsimilar to all classifiers in A<i+1>, the incre-
ase in the fuzzy measure is maximal.

Proposition 2 Let µ(I) be an ISFM on U w.r.t. f : U →
[0, 1], and let i ∈ {1, . . . , r − 1}. Then the following

holds

1. ∃k ∈ {i + 1, . . . , r} s<i>,<k> = 1 ⇒
µ(I)(A<i>) = µ(I)(A<i+1>)

2. ∀k ∈ {i + 1, . . . , r} s<i>,<k> = 0 ⇒
µ(I)(A<i>) = µ(I)(A<i+1>) + κ<i>/.µ(U)

Proof: Trivially from (16) and (19).

The following proposition describes an extreme case,

in which all the classifiers are totally similar (the mea-

sure in the integral behaves like a constant measure and

Choquet and Sugeno intergrals reduce to the maximum

value).

Proposition 3 Let µ(I) be an ISFM on U w.r.t. f : U →
[0, 1], f(ui) = fi, and let ∀i, j ∈ {1, . . . , r}, i �=
j, si,j = 1. Then ∀X ⊆ U

1. ∀k ∈ {1, . . . , r} µ(I)(A<k>) = 1

2. ∃k ∈ {1, . . . , r} A<k> ⊆ X ⇒ µ(I)(X) = 1

3. ∀k ∈ {1, . . . , r} A<k> � X ⇒ µ(I)(X) = 0

4. (C)
#
fdµ(I) = (S)

#
fdµ(I) = maxri=1 fi

Proof: (1) follows directly from (15-17) and (19); (2),

(3) from (18) and (4) is an application of the measure to

the definition of Choquet and Sugeno integrals.

Another extreme case is that all the classifiers are to-

tally unsimilar (the measure in the integral behaves like

an additive measure and the Choquet integral reduces to

the weighted mean).

Proposition 4 Let µ(I) be an ISFM on U w.r.t. f : U →
[0, 1], f(ui) = fi, and let ∀i, j ∈ {1, . . . , r}, i �=
j, si,j = 0. Then the following holds:

1. ∀k ∈ {1, . . . , r} µ(I)(A<k>) =
�r

l=k κ<l>

�µ(U) =
�r

l=k κ<l>�
r
l=1 κ<l>
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2. (C)
#
fdµ(I) =

�r
l=1 f<l>κ<l>�

r
l=1 κ<l>

Proof: (1) follows directly from (15-17) and (19). (2)

is an application of the measure to the definition of the

Choquet integral.

5. Experiments

To experimentally compare the ISFM-based approach

with the Sugeno λ-measure approach, we designed three

different classifier systems:

• Random Forest ensemble [16]. In our experi-

ments, we used r = 20 trees.

• Ensemble of k-Nearest neighbor classifiers [17]

created by bagging [14]. In our experiments, we

used r = 20 classifiers in the team with k = 5.

• Ensemble of Quadratic discriminant classifiers

[17] created by the multiple feature subset me-

thod [18]. Each classifier was trained only on a

subset of features. For datasets with n ≤ 5 di-

mensions, all possible subsets (feature combinati-

ons) in the MFS were used. For higher dimensio-

nal datasets, 32 subsets of features were selected

by bagging.

To compute the classification confidence, we used the

ELA method (2). The number of neighbors was set

based on the size of the dataset to k = 5 (≤ 500 pat-
terns), k = 10 (501−1000 patterns), or k = 20 (> 1000
patterns). The values of the parameterswere set based on

preliminary testing, no optimization or fine-tuning was

done. As aggregation operators, we used the following

• Weighted mean – representing the baseline (spe-

cial case of the Choquet integral with additive me-

asure)

• Choquet integral with the λ-measure

• Choquet integral with the ISFM

• Sugeno integral with the λ-measure

• Sugeno integral with the ISFM

• Single best (for reference) – mean error rate of the

classifier with lowest error rate selected in each

crossvalidation run, representing the “worst-case”

scenario

• Oracle (for reference) – the theoretical “best-

case” scenario, which, for a given pattern, gives

correct prediction if and only if any of the classi-

fiers in the team gives correct prediction

The methods were implemented in the Java program-

ming language and the experiment was performed on

7 artificial and 19 real-world datasets with varying size,

dimensionality, and class count (due to numerical insta-

bilities of the QDC model, we had to leave out three

real-world datasets for the QDC ensemble). The proper-

ties of the datasets are shown in Table 1. We used 10-fold

cross-validation to measure the performance of the me-

thods (8 folds for training set, 9th fold for validation

set, 10th fold for testing set, with cyclic shift). The va-

lidation set was used to compute the classification con-

fidence and the similarity of the classifiers in the team,

and the testing set was used to compare the results of the

methods. The mean value and standard deviation of the

error rate were measured. We also measured statistical

significance of the results (at 5% confidence level by the

analysis of variance using Tukey-Kramer method).

Table 1: Properties of the datasets used in the experiments.

Dataset ref. size classes dimensions

Artificial

clouds [25] 5000 2 2

concentric [25] 2500 2 2

gauss 3D [25] 5000 2 3

gauss 8D [25] 5000 2 8

ringnorm [26] 3000 2 20

twonorm [26] 3000 2 20

waveform [26] 5000 3 21

Real-world

balance [26] 625 3 4

breast [26] 699 2 9

glass [26] 214 7 9

iris [26] 150 3 4

letter-recg. [26] 20000 26 16

pendigits [26] 10992 10 16

phoneme [25] 5427 2 5

pima [26] 768 2 8

poker [26] 4828 3 10

satimage [25] 6435 6 4

segmentation [26] 2310 7 16

sonar [26] 208 2 60

texture [25] 5500 11 10

transfusion [26] 748 2 4

vehicle [26] 946 4 18

vowel [26] 990 11 10

wine [26] 178 3 13

wineq-red [26] 1600 3 11

wineq-white [26] 4898 3 11

yeast [26] 1484 4 8
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Table 2: Random Forest: The i, j-th element of the table shows the number of datasets in which method i obtained lower mean

error rate than method j. The number in parentheses, if present, shows the number of datasets for which the improvement

was statistically significant (excluding Oracle). The last column shows the number of datasets for which a given method

was better than all the other methods (excluding Oracle).

↓ superior to→ SB WMean CI-λ CI-ISFM SI-λ SI-ISFM Oracle all

SB - 0 1 (1) 0 1 (1) 0 0 0

WMean 26 (16) - 12 (3) 3 12 (5) 5 0 1

CI-λ 25 (16) 14 - 5 14 8 0 1

CI-ISFM 26 (18) 23 21 (5) - 19 (5) 16 0 11

SI-λ 25 (17) 14 12 6 - 8 0 4

SI-ISFM 26 (18) 21 18 (3) 10 18 (4) - 0 9

Oracle 26 26 26 26 26 26 - 26

Table 3: k-NN ensemble: The i, j-th element of the table shows the number of datasets in which method i obtained lower mean

error rate than method j. The number in parentheses, if present, shows the number of datasets for which the improvement

was statistically significant (excluding Oracle). The last column shows the number of datasets for which a given method

was better than all the other methods (excluding Oracle).

↓ superior to→ SB WMean CI-λ CI-ISFM SI-λ SI-ISFM Oracle all

SB - 7 3 2 2 2 0 0

WMean 19 (1) - 3 4 3 3 0 0

CI-λ 23 (3) 23 - 10 17 11 0 9

CI-ISFM 24 (6) 22 (3) 16 - 19 (1) 14 0 10

SI-λ 25 (2) 23 (1) 11 7 - 8 0 2

SI-ISFM 24 (8) 23 (3) 15 12 18 (1) - 0 7

Oracle 26 26 26 26 26 26 - 26

Table 4: QDC ensemble: The i, j-th element of the table shows the number of datasets in which method i obtained lower mean

error rate than method j. The number in parentheses, if present, shows the number of datasets for which the improvement

was statistically significant (excluding Oracle). The last column shows the number of datasets for which a given method

was better than all the other methods (excluding Oracle).

↓ superior to→ SB WMean CI-λ CI-ISFM SI-λ SI-ISFM Oracle all

SB - 8 6 4 7 3 0 1

WMean 15 (8) - 12 (2) 2 13 (2) 4 0 0

CI-λ 17 (6) 11 - 5 14 (1) 7 0 3

CI-ISFM 19 (8) 21 (4) 19 (5) - 19 (5) 11 0 10

SI-λ 16 (8) 10 9 4 - 7 0 1

SI-ISFM 20 (9) 19 (4) 16 (5) 12 16 (5) - 0 8

Oracle 23 23 23 23 23 23 - 23
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To compare the methods in general, we measured the

number of datasets in which a given method outperfor-

med other methods, the results are shown in Tables 2–4.

As our main goal in this experiment was to com-

pare ISFM with Sugeno λ-measure, we can say the

following. For the Random Forests with Choquet in-

tegral, ISFM outperformed λ-measure on 21 datasets

(5 times significant), with Sugeno integral on 18 data-

sets (4 times significant), out of 26 datasets total. For the

k-NN ensemble with Choquet integral, ISFM outperfor-

med λ measure on 16 datasets (none significant), with

Sugeno integral on 18 datasets (once significant), out of

26 datasets total. For the QDC ensemble with Choquet

integral, ISFM outperformed λ measure on 19 datasets

(5 times significant), with Sugeno integral on 16 datasets

(6 times significant), out of 23 datasets total.

Generally speaking, fuzzy integral with ISFM usually

outperformed λ-measure in most cases (sometimes sta-

tistically significantly, but no significant outperforming

of λ-measure over ISFM occurred). The Choquet inte-

gral obtained slightly better results than the Sugeno in-

tegral, and the Choquet integral with ISFMwas the most

succesfull aggregation scheme in these experiments.

Another interesting result is that while both Choquet and

Sugeno integrals with ISFM outperformed the Weighted

Mean, this is not true for the case of Sugenoλ-measure –

in most cases, both Choquet and Sugeno integrals with

λ-measure obtained comparable or significantly worse

results than the Weighted mean.

6. Conclusion

In this paper, we have summarized how the fuzzy inte-

gral can be used as an aggregation operator in dynamic

classifier systems. We have discussed that symmetric,

and ⊥-decomposable fuzzy measures are not appropri-

ate for using in classifier combining with fuzzy integral

and we have introduced an interaction-sensitive fuzzy

measure (ISFM), which tries to overcome the weak-

nesses of these methods. IFSM, designed specifically

for the use in classifier aggregation, provides a conve-

nient tool for representing the diversity of the team of

classifiers, and, when used in the fuzzy integral, the

aggregation can incorporate the classifier predictions,

the classification confidences, and also the diversity of

the team. Our experiments with three different dynamic

classifier systems with the Choquet and Sugeno integrals

on 26 datasets show that the ISFM outperforms the Su-

geno λ-measure, which is used most often in the litera-

ture in connection with the fuzzy integral.
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