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Department of Medical Informatics
Instutite of Computer Science of the ASCR, v. v. i.
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Abstract

In this paper we study an identification

of culprit and assesment of evidence against

him. We define a simple model called the island

problem and we derive the weight-of-evidence

formula in its basic form. We find how we

can deal with uncertainty about basic parame-

tres of model, like size of population. We in-

vestigate possibility of inclusion of relatedness

and subpopulation structure into model through

beta-binomial formula, we enlarge DNA mixtu-

res of DNA and at the close we present brief

overview about DNA databases.

1. Introduction

Technological progress that allows the use of DNA has

caused a revolution in criminology. It helps convict the

perpetrators of those crimes that once appeared irre-

solvable and also helps prove the innocence who have

already been convicted. DNA analysis is now accepted

by the broad public as a completely standard procedure,

which reliably convicts the offender. Here, however, hi-

des one of the main problems that results from using

DNA, for even DNA evidence is not foolproof.

Several possibilities keep DNA from being completely

reliable: for example there may be a false location of the

trace (more specifically, the offender may have discar-

ded a cigarette butt which had previously been smoked

by someone else); the wrong take of biological samples

or damage to the samples could have occurred; or there

may have been secondary transfer of biological material.

However, mathematicians do not deal with any of these

things. Rather, they are faced with the following task: if

all of the above options are excluded, what is the pro-

bability that a particular offender is a detained person,

given that the perpetrator’s DNA and the DNA of the

suspect are available?

In forensic practice, genetic profiles consisting of the

short tandem repeat (STR) polymorphisms are currently

used. The number of polymorphisms varies from coun-

try to country, with the smallest being seven used in Ger-

many and a maximum of sixteen used in the Czech Re-

public. The probability of correct identification depends

on the number of comparisons of polymorphisms (or

loci where studied polymorphisms lie) and their gene-

tic variability. The more we investigate loci and the gre-

ater the variability between individual loci, the smaller

the probability that the other person will have the same

configuration (and therefore the same genetic profile).

Due to the quality of biological material and its amount

it is not always possible to investigate all of the poly-

morphisms and very often genetic profiles contain fewer

loci than is necessary to uniquely identify them.

In the following text we will assume that we examine

only one locus. Assuming independence of loci, gene-

ralization to a larger number of loci can be performed

using product rule (i.e. multiplying the individual mar-

ginal probabilities).

2. Formalization

Denotation

• E - evidence or information about the crime

(i.e. the circumstances, witness testimonies, crime

scene evidence, etc.)

• G - an event at which the suspect is guilty

• I - an event at which the suspect is innocent

• Ci - an event at which the culprit is a person i

• I - the population of alternative suspects.
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Our goal is to determine the conditional probability of

P(G|E) that, given circumstancesE, the suspect is truly

the culprit of the investigated crime. According to Bayes

theorem

P(G|E) = P(E|G)P(G)
P(E|G)P(G) + P(E|I)P(I) . (1)

However, the expression P(E|I) cannot be counted di-

rectly. The suspect is innocent if and only if there exists

an index i ∈ I in which the event Ci occurs. Then the

event I is equivalent to the event ∪i∈I Ci and thanks to

the disjunction of events Ci holds:

P(I) = P (∪i∈ICi) =
�

i∈I

P(Ci).

Thus

P(E|I)P(I) = P (E| ∪i∈I Ci)P (∪i∈I Ci) =

=
P (E ∩ (∪i∈I Ci))

P (∪i∈I Ci)
P (∪i∈I Ci) =

= P (∪i∈I (E ∩Ci)) =
=

�

i∈I

P (E ∩ Ci) =

=
�

i∈I

P(E|Ci)P(Ci).

Define likelihood ratio

Ri =
P(E|Ci)
P(E|G) (2)

which expresses how many times the probability of evi-

dence E is greater under the condition that the culprit is

a person i than under the condition that the culprit is the
suspect. Further define likelihood weights

wi =
P(Ci)

P(G)

which expresses how many times the prior probability

of committing a crime by a person i is greater than the

prior probability of committing a crime by the suspect.

Then

P(G|E) = 1

1 +
�
i∈I wiRi

. (3)

The formula (3) is usually called the weight-of-

evidence formula.

3. The island problem

The simplest application of the previous part is the ”is-

land problem”. This is a model where a crime is com-

mitted on an inaccessible island which contains N peo-

ple who are unrelated to each other. At the beginning,

there is no information about the offender, so we as-

sign to each of the islanders the same (prior) probability

of committing a crime. Then the offender is found to

possess a certain characteristicΥ and the suspect is also

found to have that characteristic, Υ. The question beco-
mes, to what extent can we be sure that we have found

the suspect who is truly the culprit?

Using the formula (3) we get

P(G|E) = 1

1 +N · p , (4)

where p is the probability of the Υ. For example if

p = 0.01 andN = 100 then P(G|E) = 1/2.

The previous result can be modified for more complex

(and realistic) situations. Let’s see where our simple mo-

del can fail:

• Typing and handling errors

As the test may give erroneous results in a small

percentage of cases, errors caused by human fac-

tor must also be considered: contamination or

replacement of a sample from which the Υ-status
is investigated; incorrect evaluation of the results,

or even intentional misrepresentation.

• The population size

Often the population size N is only estimated and

furthermore, if there is migration in the popu-

lation, then it is necessary to account for greater

uncertainty within the population size.

• The probability of occurrenceΥ in the population

The value of p is usually unknown and is therefore
estimated on the basis of relative frequency of the

Υ in a smaller sample or in a similar population,

about which we have more information. However,

these auxiliary data may be outdated or may only

partially describe the ivestigated population.

• Suspect searching

The suspect is not usually chosen randomly from

the population but on the basis of other circum-

stantial evidence which increase the probability of

guilt. Another possibility is choose the suspect by

testing persons from the population for the pre-

sence of Υ. In this way, people who are not Υ-
bearers can be excluded and thus the population

size of alternative suspects is reduced.

• Relatives and population subdivision

If the suspect (or other person being tested) is a

Υ-bearer and some of his relatives are included in

the population too, then in the case of DNA profile
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increases the probability of other persons having

Υ due to inheritance. Similarly, unusually high re-

lative frequency of a rare character usually occurs

within the same subpopulation due to its shared

evolution history.

• The same prior probability of committing a crime

Although this requirement intuitively corresponds

with the general presumption of innocence, we

can asses varying prior probability (i.e. based on

the distance from the scene, time availability, or a

possible alibi).

We will analyze some of these cases in detail in the

following sections.

4. Uncertainty about population size

The uncertainty in population size of possible alterna-

tive suspects affects the prior probability, P(G). Con-
sider the population size Ñ as a random variable with

mean N . Prior probability of guilt, conditional on value

Ñ , is

P(G|Ñ) = 1/(Ñ + 1).
However, since Ñ is not known, we use the expectation:

P(G) = E
$
G|Ñ

%
= E

!
1

Ñ + 1

"
.

The function 1/(Ñ + 1) is not symmetric, but is convex

on the interval (0,∞). Therefore Jensen’s inequality for
convex functions (E[f(x)] ≥ f(E[x])) implies

P(G) = E
!

1

Ñ + 1

"
≥ 1

N + 1

because E[Ñ ] = N .

Thus the uncertainty of the value N tends to favor the

defendant. This effect is usually very small. Let it be

shown in a concrete example.

For ε ∈ (0, 0.5) we put

Ñ =





N − 1 with probability ε
N with probability 1− 2ε
N + 1 with probability ε.

Then

P(G) = E

!
1

Ñ + 1

"
=

ε

N
+
1− 2ε
N + 1

+
ε

N + 2
=

=
1

N + 1
+

2ε

N(N + 1)(N + 2)
≥ 1

N + 1

and if we put ε = 0.25 with N = 100 then P(G) is
greater than 1/(N + 1) by only 0.000000485.

Let’s see what uncertainty in population size causes by

using formula (4):

P(G|E) =
1

1 +
�
iRi

P(Ci)
P(G)

=

=
1

1 + p 1
P(G)

�

i

P(Ci)

� �� �
=1−P(G)

=

=
1

1 + pN(N+1)(N+2)
N2+2N+2ε (1− N2+2N+2ε

N(N+1)(N+2))
=

=
1

1 +Np N3+2N2−2ε
N3+2N2+2Nε

=

=
1

1 +Np
�
1− 2ε N+1

N3+2N2+2Nε

� .

Again substituting ε = 0.25 and N = 100 we conclude
that P(G|E) = 0.5000124 which, despite the high va-

lue of ε, differs from the original result of 50 %, which
was calculated with a fixedN , by just one thousandth of

a percent. Therefore, continuing with uncertainty about

N ,

P(G|E) ≈ 1

1 +Np (1− 2ε/N2)

is very good approximation to take. In this example the

approximation gives P(G|E) = 0.5000125, which is

50.00125 %.

Balding [1] uses an approximation order of worse mag-

nitude

P(G|E) ≈ 1

1 +Np (1− 4ε/N3)

which gives our example the value P(G|E) =
0.5000003, or 50.00003 %.

5. Relatives and population structure

Alleles, which are identical and come from a com-

mon ancestor, are called identical by descent (ibd ).

The commonality of recent evolution history between

two persons, whether relatives or members of the same

subpopulation, increases the probability of ibd alleles

occurrence. Therefore, the coancestry coefficient θ, indi-
cating the probability that two randomly selected alleles
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on fixed locus are ibd, is used as the measure of rela-

tedness within subpopulations. Neglecting the influence

of kinship and population structure leads to an overesti-

mation of posterior probability of the suspect’s guilt, and

therefore ignoring this influence tends to cause disfavor

for defendant. Thus, this topic is given considerable at-

tention.

Consider a given locus with J alleles A1, . . . , AJ
whose probability of occurrence in the population is

p1, . . . , pJ ,
�J
i=1 pi = 1. Allele proportions in the sub-

population can be modeled by the Dirichlet distribution

( [5]) with parameters λpi, λ =
1−θ
θ(1−k) where θ is the

coancestry coefficient characterizing the subpopulation

and k is the proportion of the subpopulation within the

general population. Thus the probability of drawingmi

alleles Ai (
�
imi = n) is given by

P(m1, . . . ,mJ) =
Γ (λ)

Γ (λ+ n)

J�

i=1

Γ (λpi +mi)

Γ (λpi)
. (5)

Putting m = (m1, . . . ,mJ) we can adjust formula (5)

to

P(m) =

J�
j=1

mj−1�
i=0

[(1− θ) pj + θi (1− k)]

n−1�
i=0

[1− θ + θi (1− k)]

. (6)

The formula (6) is usually called the beta-binomial
sampling formula and applies to ordered samples. If we

want to use unordered samples, it is necessary to mul-

tiply the result by n!
m1!···mJ !

.

From the formula (6) we can also deduce the probability

of certain allele withdrawal by using our knowledge of

previous allele’s withdrawal:

P(mj + 1|m1, . . . ,mj , . . . ,mJ) =

=
(1− θ) pj +mjθ (1− k)

1− θ + nθ (1− k)
. (7)

5.1. Aplication of beta-binomial formula

Denote GC and GS as culprit and suspect genotypes,

respectively, and denoteGi as the genotype of a general
person i. Then the likelihood ratio (2) can be rewritten

as

Ri =
P (GC = GS = D|Ci)
P (GC = GS = D|G) =

=
P (Gi = GS = D)

P (GS = D)
= P (Gi = D|GS = D) .

Suppose first that the culprit has a homozygous profile

AjAj . Then calculate the probability that the suspect has
the same homozygous profile:

Ri = P(Gi = AjAj |GS = AjAj) ≡ P(A2
j |A2

j ) =

= P(Aj |A3
j ) · P(Aj |A2

j )

We know to calculate these conditional probabilities

using (7). First we put mj = n = 2 and then mj =
n = 3. Therefore

Ri =
[(1− θ) pj + 2θ (1− k)]

[1− θ + 2θ (1− k)]
×

× [(1− θ) pj + 3θ (1− k)]

[1− θ + 3θ (1− k)]
. (8)

Similarly, we proceed for culprit with a heterozygous

profile AjAk:

Ri = P(Gi = AjAk|GS = AjAk) ≡
≡ P(AjAk|AjAk) =
= P(Ak|A2

jA
1
k)P(Aj |A1

jA
1
k) +

+P(Aj |A1
jA

2
k)P(Ak|A1

jA
1
k). (9)

To quantify both expressions on the bottom line we put

mj = 1, n = 2 andmk = 1, n = 3;mk = 1, n = 2 and
mj = 1, n = 3 respectively. In total

Ri = 2
[(1− θ) pj + θ (1− k)]

[1− θ + 2θ (1− k)]
×

× [(1− θ) pk + θ (1− k)]

[1− θ + 3θ (1− k)]
. (10)

6. DNA mixtures

If the DNA sample is found to have more than two alle-

les at one locus, then it is defined as a mixture. The num-

ber of contributors to the mixture can be known or esti-

mated, usually as
&
n
2

'
where n is the maximum number

of alleles detected. Due to the large number of situations

which may arise we show for illustration only the case

in which the victim (V ) and one other person contribute

to the mixture.

Thus the likelihood ratioRi, defined by formula (2), can

be rewritten as

Ri =
P (EC , GS , GV |Ci)
P (EC , GS , GV |G)

=

=
P (EC |GS , GV , Ci)
P (EC |GS , GV , G)

· P (GS , GV |Ci)
P (GS , GV |G)

=

=
P (EC |GS , GV , Ci)
P (EC |GS , GV , G)

=
P (EC |GV , Ci)

P (EC |GS , GV , G)
. (11)

PhD Conference ’11 123 ICS Prague



Dalibor Slovák Stochastic Approaches to Identification Process ...

6.1. Four alleles mixture

First we look at the case where the mixture consists of

four alleles.

Suppose the following conditions apply:

1. None of the persons are considered relatives to

each other.

2. The population is homogeneous (i.e. θ = 0).

3. The population follows Hardy-Weinberg equilib-

rium.

Let the mixture be made up of alleles A,B,C, and D,

with known probabilities of occurrence in the total po-

pulation pA, pB, pC , and pD. Also let the suspect have

alleles A and B and let the victim have alleles C and

D. Then the denominator in the formula (11) is equal to

one, the numerator is equal to the probability of obser-

ving the person with alleles A and B (which using the

information above assumes the probability of occurance

2pApB), and therefore, the likelihood ratio is

Ri = 2pApB.

Suppose now that all considered persons have the same

degree of relatedness to each other as expressed by the

coancestry coefficient θ. Then according to (7)

Ri = P (AB|ABCD) =

=
2 [(1− θ)pA + θ (1− k)] [(1− θ)pB + θ(1− k)]

[1− θ + 4θ(1− k)] [1− θ + 5θ (1− k)]
.

6.2. Three alleles mixture

In the case of three alleles in the sample it is necessary

to assume at least two contributors to the mixture. Con-

sider alleles A,B, and C with probabilities pA, pB, and
pC . If the victim is homozygous for allele C, we get the

same results as in the four allele’s mixture.

Assume that the victim is heterozygous with alleles A
and B and that the suspect is homozygous for allele C.

Furthermore, assume that conditions 1 to 3 are fulfilled.

Then the denominator of the formula (11) is again equal

to one, the numerator is equal to the probability of ob-

serving a person who has the allele C and does not have

a different allele other than A,B, or C, and

Ri = P(AC) + P(BC) + P(CC) =

= 2pApC + 2pBpC + p2C . (12)

To include the population structure we use the formula

(7) again:

Ri = P (AC|ABCC) + P (BC|ABCC) +
+ P (CC|ABCC) =

=
2 [(1− θ) pA + θ (1− k)] [(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)] [1− θ + 5θ (1− k)]

+
2 [(1− θ) pB + θ (1− k)] [(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)] [1− θ + 5θ (1− k)]

+
[(1− θ) pC + 3θ (1− k)] [(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)] [1− θ + 5θ (1− k)]

=
[(1− θ) pC + 2θ (1− k)]

[1− θ + 4θ (1− k)]
×

× [(1− θ) (2pA + 2pB + pC) + 7θ (1− k)]

[1− θ + 5θ (1− k)]
.

We assumed in the previous calculation that the suspect

is homozygous with allelesC. If he is heterozygote with

alleles A and C, or B and C respectively, formula (12)

remains unchanged under conditions 1 to 3. If popu-

lation structure is included the likelihood ratio is

Ri =
[(1− θ) pC + θ (1− k)]

[1− θ + 4θ (1− k)]
×

× [(1− θ) (2pA + 2pB + pC) + 8θ (1− k)]

[1− θ + 5θ (1− k)]
.

7. DNA database

DNA profiles, as sequences of alphanumeric data,

allows relatively easy storage in the database. Therefore

national databases began being created in the late 1990’s

and have continued to function since then. Currently

there are three major forensic DNA databases: the Com-

bined DNA Indexing System (CODIS), which is main-

tained by the United States FBI; the European Network

of Forensic Science Institutes (ENFSI) DNA database;

and the Interpol Standard Set of Loci (ISSOL) database

maintained by Interpol.

All of these systems divide DNA database into two sub-

databases. In the crime scene database the biological

samples which are collected at the scene are stored and

in the convicted offender database genetic profiles of

persons convicted in the past are stored. These two data-

bases are compared with one another and eventual agre-

ement of profiles is examined by qualified professionals.

The type of offenses for which DNA is stored differs

among countries and states. Initially, these databases

contained only samples from violent offenders, such as

those convicted of aggravated assault, rape, or murder.
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However, the value of obtaining DNA from offenders of

less severe crimes has been recognized more in recent ti-

mes, as it has been discovered that many small time cri-

minals often become repeat offenders, and in some cases

more violent future offenders. However, the power of a

large bank of DNA samples can sometimes serve as a

deterrent. A match of DNA evidence from a crime scene

(which would then be logged in the crime scene data-

base) to one in the convicted offender database rapidly

solves the crime rapidly and efficiently, saving time, ef-

fort, and money. Conversely, the use of DNA evidence

can also immediately prove a suspect’s innocence ( [6]).

According to data from the United States in August of

2006, the crime scene database included approximately

150 000 profiles and the convicted offender database

more than 3 500 000 profiles ( [2]). The national data-

base of United Kingdom currently consists of over four

million profiles, and increases monthly by forty to fifty

thousand. The success of this approach has been con-

firmed by the increase in the number of solved crimes

from twenty-four to forty-three percent within the Uni-

ted Kingdom, since the creation of the DNA databases.

Therefore, the database system has the support of pub-

lic. From a negative standpoint, the DNA often reveals

very sensitive, personal information and therefore it is

necessary that databases are kept confidential and are

thoroughly protected from abuse.

The Czech national database was created in 2002. After

rapid development, the database now contains approxi-

mately ninety thousand genetic profiles.
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