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2011
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Datum staženı́: 10.04.2024
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Abstract

We study some basic properties of Hilbert-

style propositional calculi with the rule of con-

densed detachment instead of modus pones and

substitution. The rule of condensed detachment,

proposed by Carew A. Meredith, can be seen as

a version of modus ponens with the “minimal”

amount of substitution.

1. Introduction

Hilbert-style calculi for various propositional logics

has been studied by prominent logicians, including

Łukasiewicz and Tarski, constituting historically a well-

established branch of mathematical logic. These calculi

are usually equipped with the rules of detachment, we

shall prefer call it modus (ponendo) ponens, and substi-

tution.1 One of the logicians who significantly contribu-

ted to the study of such calculi was Carew A. Meredith.

In the 1950’s, he proposed, cf. [1], the rule of conden-

sed detachment as a rule which combines modus ponens

with a “minimal” amount of substitution, cf. [2].

The general idea behind the rule of condensed deta-

chment is that from two formulae ϕ → ψ and χ, such
that there is a most general unifier σ of ϕ and χ, derive
σ(ψ). However, this brief version does not contain some

important technical details which will be discussed later

in the paper, see Definition 2.1.

The use of unification in the definition of condensed de-

tachment suggests its connection with binary resolution,

cf. [3]. However, the original formulation did not use

unification, which was proposed by Robinson [4] in the

1960’s. There is also a very tight connection with com-

binatory logic, cf. [2].

It is usually claimed that one of the main advantages

of condensed detachment over the rules of modus po-

nens and substitution is an economic presentation of

proofs. The reason is that the result of application of

condensed detachment is unique (up to variable rena-

ming) and a proof can be presented as a sequence of

axioms, there is no need to write substitutions. In this

paper we try to discuss some interesting questions which

arise if we replace the rules of modus ponens and substi-

tution in Hilbert-style propositional calculi solely by the

rule of condensed detachment. Although condensed de-

tachment may seem as a toy tool, there are some rather

interesting applications e.g. in proof complexity [5], see

Section 3.2.

The paper is organised as follows. In Section 2 we de-

fine some basic notions including the rule of condensed

detachment. In Section 3 we prove Theorem 3.1 which

connects proofs using the rule of condensed detachment

and proofs using the rules of modus pones and substi-

tution. Also the uniqueness of application of condensed

detachment concerning the number of different formu-

lae provable from a finite set of axioms by proofs of

some maximal given length is discussed in Section 3.1.

In Section 4 the notion of D-completeness of a set of

axiomsA, which means that the very same formulae are

provable by condensed detachment as by modus ponens

and substitution in A, is studied and some basic proper-

ties are proved.

We would like to note that the most of the results in this

paper, although mainly (re)discovered independently,

are implicitly or explicitly discussed in several papers

on condensed detachment, cf. [2,3,6]. These papers also

influenced the presentation given here.

1Since axiom schemata are sometimes used instead of axioms, the rule of substitution is in these cases only implicitly presented.
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2. Preliminaries

We fix a countably infinite set of variables Var =
{p, q, r, . . .}. The set of formulae Fml is defined in the

standard way: any variable from Var is an element of

Fml , if ϕ, ψ ∈ Fml then also (ϕ → ψ) ∈ Fml and

nothing other is a member of Fml . Hence the only con-

nective we are interested in is the implication. The re-

ason for this is that all the things we want to discuss

become apparent already in implication fragments. We

usually denote formulae by ϕ, ψ, and χ. The outermost

brackets are mostly omitted.

A substitution σ is a function σ : Var → Fml . We say

that a substitution σ is a renaming if σ : Var → Var is

a bijection. The result of an application of a substitution

σ on a formula ϕ, denoted σ(ϕ), is the formula obtained

by replacing variables in ϕ according to σ simultane-

ously. A composition of substitutions σ : Var → Fml

and δ : Var → Fml is a substitution σ ◦ δ = { �p, ψ� |
(∃ψ�)(�p, ψ�� ∈ σ and ψ = δ(ψ�)) }. The empty sub-

stitution is denoted C = { �p, p� | p ∈ Var }. In this

paper substitutions are denoted σ, δ, θ, η, and ζ. Instead
of using ordered pairs we write a substitution as a set of

pairs p/ψ, usually writing only the important one, mea-

ning the substitution is defined as the empty substitution

on the other variables.

A formula ψ is a variant of a formula ϕ, abbreviated by
ψ ∼ ϕ, if there is a renaming σ such that ψ = σ(ϕ), i.e.
ϕ = σ−1(ψ). Moreover, we say that a substitution σ is

a variant of a substitution δ if there is a renaming θ such
that σ = δ ◦ θ, i.e. δ = σ ◦ θ−1.

A unification of a set of formulae F = {ϕ1, . . . , ϕn} is
such a substitution σ that σ(ϕ1) = · · · = σ(ϕn). If such
a substitution exists we say that F is unifiable. Due to

the Unification Theorem of Robinson [4], for any unifi-

able set of formulae F there exists a most general unifier

of F . A most general unifier (m.g.u.) σ of F is such a

unification that for any other unification δ of F , there is

a substitution θ such that σ ◦ θ = δ. All the most general

unifiers, if they exist, are the same up to renaming, they

are variants of each other. Since this difference will be

unimportant for us we shall write the m.g.u. instead of a

m.g.u.

2.1. Hilbert-style calculi

In this paper we study Hilbert-style propositional cal-

culi. A Hilbert-style calculus consists of a set of axioms

A, which is just a set of formulae, and deduction rules.

The following axioms are discussed in the paper:

(B) (p→ q)→ ((r → p)→ (r → q)),

(B�) (p→ q)→ ((q → r)→ (p→ r)),

(C) (p→ (q → r))→ (q → (p→ r)),

(I) p→ p,

(K) p→ (q → p),

(W) (p→ (p→ q))→ (p→ q),

(P) ((p→ q)→ p)→ p.

The names of axioms are based on corresponding com-

binators in combinatory logic, with the exception of (P)

which stands for Peirce’s law. We can present a set of

axioms listing the axioms it contains, e.g. BCK denotes

the set containing (B), (C), and (K).

We shall use only three deduction rules: modus ponens,

substitution, and condensed detachment. The rule of mo-

dus ponens (or detachment) derives ψ from ϕ → ψ and

ϕ. The rule of substitution derives σ(ϕ) from ϕ for any

substitution σ.

Definition 2.1 (Condensed Detachment) Let us have

two formulae ϕ → ψ and χ. We produce a variant of

χ called χ�, which does not have a common variable

with ϕ → ψ. If there is the m.g.u. σ of ϕ and χ�, then

produce a variant σ� of σ such that no new variable in

σ�(ϕ) occurs in ψ. The condensed detachment of ϕ→ ψ
and χ, denoted D(ϕ → ψ)χ, is σ�(ψ). Otherwise, the
condensed detachment of ϕ→ ψ and χ is not defined.

Note. For technical reasons it is sometimes useful to de-

fine condensed detachment not only for formulae conta-

ining implication but also for variables. In this case, the

condensed detachment of ϕ, which is a variable, and χ,
is defined as ϕ, cf. [2].

Remark. It is evident that the condensed detachment of

ϕ and ψ is defined uniquely up to variants (renaming).

Thus we shall write that Dϕψ ∼ χ. When the rule of

condensed detachment is the only rule we shall also so-

metimes write ϕψ ∼ χ.

As Definition 2.1 is quite technical, we discuss the

whole process of an application of condensed deta-

chment in details. First, we produce a variant χ� of χ
with no common variable with ϕ→ ψ. To see why, con-
sider ϕ = p → p and χ = p: there would be no unifi-

cation of p→ p and p. Moreover, if we had ϕ = p→ p,
ψ = q → q and χ = q the condensed detachment of

ϕ→ ψ and χ would be (p→ p)→ (p→ p).

Another important technical aspect is that the defini-

tion requires to produce a variant σ� of σ (note that
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σ� is also the m.g.u. of ϕ and ψ�) which satisfies

(Var(σ�(ϕ)) \Var(ϕ)) ∩ Var(ψ) = ∅. If this condi-
tion was not satisfied we would get a result that would

not be the most general one.

A proof of ϕ in A is a finite sequence of formulae

ψ1, . . . , ψn, where ψn = ϕ, with the following proper-

ties. Every element is a member of A or is derived from

the preceding elements of the sequence by a deduction

rule. In this paper we study MP-proofs which have mo-

dus ponens and substitution as their only deduction ru-

les, and D-proofs which have condensed detachment as

the only deduction rule.

If there is a D-proof (MP-proof) of ϕ in A we say that

ϕ is D-provable (MP-provable) in A. Since we already

pointed out that the result of an application of conden-

sed detachment is unique up to variants we mostly do

not mention that if ϕ is D-provable in A then also all the

variants of ϕ are D-provable in A etc.

It is worth to point out that all the MP-provable formu-

lae in BCI, BCK, BCKW, and BCKWP correspond to

logics BCI, BCK, the implicational fragment of intui-

tionistic propositional logic, and the implicational frag-

ment of classical propositional logic, respectively.

Example 2.1 We prove I in CK by condensed deta-

chment. The proof can be described as (CK)K, which

means that we use condensed detachment on C and K

and then on the result and K.

Since C = (p → (q → r)) → (q → (p → r)) and
K = p → (q → p), we produce a variant of K e.g.

s → (t → s). There is the m.g.u. σ = {r/p, s/p, t/q}
of p → (q → r) and s → (t → s), which satisfies

that no new variable in σ(p → (q → r)) occurs in

q → (p → r). It follows that CK ∼ σ(q → (p→ r)) =
q → (p→ p).

Now we can use q → (p → p) and any provable for-

mula, e.g. K, to prove I. We produce a variant of K

e.g. again s → (t → s). There is the m.g.u. τ =
{q/s → (t → s)} of q and s → (t → s). Moreo-

ver, s and t does not occur in p → p. It follows that

(CK)K ∼ τ(p→ p) = p→ p.

3. Condensed detachment

It is obvious that condensed detachment can be sim-

ply simulated by modus ponens and substitution. As the

idea behind the rule of condensed detachment is to be a

version of modus ponens equipped with the “minimal”

amount of substitution, we would expect that there is

also some connection in the other direction. This con-

nection was probably first explicitly showed in [3] by

Kalman.

Theorem 3.1 LetA be a set of axioms andP be anMP-
proof in A. Then there is a D-proof P � in A such that

every step in P is a substitution instance of a step in P �.

Moreover, P � is not longer than P .

Proof: By induction on the length of the proof P . If
P = ψ1 then ψ1 ∈ A and hence P � = ψ1. Assume that

the claim holds for n and we shall prove it for n + 1.
It means we have an MP-proof P = ψ1, . . . , ψn, ψn+1
and D-proof P �� = ψ�

1, . . . , ψ
�
m, where m ≤ n, corre-

sponding to the MP-proofP% = ψ1, . . . , ψn as the theo-
rem says. If ψn+1 ∈ A then P � = ψ1,

� , . . . , ψ�
m, ψn+1,

or P � = P �� if ψn+1 already occurs in P ��, and the claim

holds trivially. Otherwise ψn+1 is derived by some de-

duction rule from P%. Both deduction rules are discus-

sed separately.

First, ψn+1 is derived by the rule of substitution from

ψi, 1 ≤ i ≤ n. It means that there is a substitution

σ s.t. ψn+1 = σ(ψi). There is a formula ψ�
j ∈ P ��,

1 ≤ j ≤ i, and substitution θ s.t. ψi = θ(ψ�
j). It me-

ans that ψn+1 = θ ◦ σ(ψ�
j) and P � = P ��.

Second, ψn+1 is derived by the rule of modus ponens

from ψi and ψj , 1 ≤ i < j ≤ n. For the sake of genera-
lity ψi = ψj → ψn+1. There are formulae ψ�

k, ψ
�
l ∈ P ��,

1 ≤ k, l ≤ j, formulae ϕ, ψ, and substitutions θ and

η s.t. ψi = θ(ψ�
k) = θ(ϕ) → θ(ψ) and ψj = η(ψ�

l).
We produce a variant ψ��

l of ψ�
l, which does not have a

common variable with ϕ and ψ. Since θ(ϕ) = η(ψ�
l)

there is the m.g.u. ζ of ϕ and ψ��
l . We produce a vari-

ant ζ� of ζ s.t. (Var(ζ�(ϕ)) \ Var(ϕ)) ∩ Var(ψ) = ∅.
ThusP � = ψ�

1, . . . , ψ
�
m, ζ

�(ψ) and there is τ s.t. ψn+1 =
θ(ψ) = ζ� ◦ τ(ψ) = τ(ζ�(ψ)).

Corollary 3.2 Let ϕ be a formula and A be a set of

axioms. Then ϕ is MP-provable in A iff there is a for-

mula ψ and substitution σ s.t. ψ is D-provable in A and

σ(ψ) = ϕ.

Note. It is easy to transform any MP-proof P to another

MP-proofP � such that all the substitutions occur before

any application of modus ponens. Theorem 3.1 can be

from a certain point of view understood as an attempt to

produce an MP-proof P �� where modus ponens occurs

before substitution as much as possible.
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3.1. Proofs with a given length

In Hilbert-style calculi with only finitely many axioms it

is hard to enumerate explicitly all the formulae provable

in a given number of steps, because there are in general

infinitely many substitution instances. Our situation is

completely different, there are only finitely many such

provable formulae (up to variants) if we use only con-

densed detachment, namely:

Observation 3.3 Let |A| = m be a set of axioms and

ΓAn be the set of all formulae D-provable in A by pro-

ofs with at most n steps, then
��ΓAn

�� is O(m2n−1

) up to

variants.

This means that for a finite set of axiomsA we can itera-

tively generate all formulae provable in it. Thus if there

is an MP-proof P of ϕ in a finite A with at most n steps

then there is by Theorem 3.1 aD-proofP � ofψ inAwith

at most n steps such that there is a substitution σ such

that σ(ψ) = ϕ. Since there is a finite upper bound on

the number of all possible ψ, see Observation 3.3, and

we can easily test whether there is such a substitution σ
for given ψ and ϕ, we can produce a proof P � in finite

time. Moreover, we can find all such ψ, there are only

finitely many up to variants, and all D-proofs P � of ψ in

A not longer than n. Among them, there is also some ψ�

and its D-proof P �� in A, from which we can construct

an MP-proof P ��� of ϕ in A with at most n steps. This

way we can show that there is no MP-proof of ϕ in a

finite A with at most a given number of steps.

3.2. An application of condensed detachment in
proof complexity

Urquhart in [5] proves a lower bound on the length of the

proofs in Hilbert-style calculi for classical propositional

logic with the rules of modus ponens and substitution,

called substitution Frege systems in proof complexity.

There are tautologies of length O(n), for sufficiently
large n, which require proofs with Ω( n

logn ) steps. The
proof is based on the connection between MP-proofs

and D-proofs via Theorem 3.1.

4. D-completeness

Although we know that there is a tight connection for

a given set of axioms A between MP-provable formu-

lae and substitution instances of D-provable formulae, it

does not mean that any MP-provable formula is also D-

provable (up to variants) without the use of substitution.

On the other hand, it does not either mean that there is a

MP-provable formula which is not D-provable. To ela-

borate this problem we define a notion of D-complete

set of axioms.

Definition 4.1 Let A be a set of axioms and Γ be the

set of all formulae MP-provable in A. We say that A is

D-complete if all the formulae in Γ are D-provable inA.

Theorem 3.1 says how the sets which are not D-

complete look like:

Observation 4.1 Let A be a set of axioms then A is not

D-complete iff there is a formula ϕ and substitution σ
s.t. ϕ is D-provable in A, but σ(ϕ) is not.

The essential question is whether such a bit strange no-

tion of D-completeness makes sense at all. However,

in [2] Hindley and D. Meredith show that BCI and BCK

are not D-complete, but BCKW and BCKWP are D-

complete.

Definition 4.2 Let ϕ be a formula MP-provable in a set

of axioms A. We say that a formula ϕ is basic w.r.t. A

if there is no formula ψ MP-provable in A and non-

renaming substitution σ s.t. ϕ = σ(ψ). We say that a

set of formulae Γ is basic w.r.t. A if all ϕ ∈ Γ are basic

w.r.t.A. Moreover, we say that a set of axiomsA is basic

if A is basic w.r.t. A.

Note. For any formula ϕ MP-provable in A, there is

a formula ψ basic w.r.t. A and a substitution σ s.t.

ϕ = σ(ψ). However, such a formula need not be unique:

formula ((p → p) → p) → p is a substitution instance

of ((q → r) → q) → q or ((q → q) → r) → r.
Both these formulae are basic w.r.t. any set of axioms

complete for classical propositional logic.

Lemma 4.2 Let A be a set of axioms and ϕ be a for-

mula basic w.r.t. A. Then ϕ is D-provable in A.

Proof: From Theorem 3.1 it follows that there is a for-

mula ψ D-provable in A and substitution σ such that

σ(ψ) = ϕ. Since ϕ is basic in A, σ is renaming and

consequently ψ ∼ ϕ.

We say that two sets of axioms A1 and A2 are MP-
equivalent if they have the same sets of MP-provable

formulae.

Theorem 4.3 Let sets of axioms A1 and A2 be MP-

equivalent. If A1 is D-complete and basic, then A2 is

also D-complete.
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Proof: Let ϕ be a formula MP-provable in A2. Then

ϕ is MP-provable in A1, and consequently also D-

provable in A1, by the D-completeness of A1. Since A1

is basic w.r.t.A1, and thus it is basic w.r.t.A2 as well, all

the formulae inA1 are D-provable inA2, by Lemma 4.2.

Therefore we can transform any D-proof of ϕ in A1 into

a D-proof of ϕ in A2.

Note. In [6], three MP-equivalent sets of three axioms

are presented, BB�I among them, but only one of them

is D-complete. Hence BB�I is not D-complete by The-

orem 4.3, because BB�I is basic. Moreover, the two re-

maining sets differ only in one axiom, and the one from

the D-complete set is a substitution instance of the other

one from the set which is not D-complete. Although it

may look a bit surprising it holds generally.

Corollary 4.4 If a set of axioms A is not D-complete

then there is no set of axioms A� MP-equivalent to A,

D-complete, and basic.

As we already know about BCI, BCK, and BB�I that

these sets are not D-complete, we know that there are no

D-complete and basic sets of axioms MP-equivalent to

them.

On the other hand, Theorem 4.3 has mainly a positive

meaning. We can easily check that BCKW and BCKWP

are basic. It means that any set of axioms which is to-

gether with modus ponens and substitution complete for

the implicational fragment of intuitionistic logic or clas-

sical logic, respectively, is also D-complete.

The following lemmata, especially the second one, are

very useful to prove that some set of axioms is D-

complete. They say that not even all the instances of

axioms are D-provable in sets of axioms which are not

D-complete.

Lemma 4.5 Let A be a set of axioms. All the substitu-

tion instances of axioms in A are D-provable iff A is

D-complete.

Proof: Any MP-proof P can be transformed to an

MP-proof P � where all the substitutions occur before

any application of modus ponens, and modus ponens

can be easily simulated by condensed detachment. The

converse direction follows from the definition of D-

completeness.

Lemma 4.6 ([6]) Let A be a set of axioms and ϕ → ϕ
be D-provable in A for any formula ϕ. Then A is D-

complete.

Proof: For any ϕ MP-provable in A, there exists ψ s.t.

ψ is D-provable in A and ϕ is a substitution instance of

ψ. From the provability of ψ and ϕ → ϕ we immedia-

tely obtain that ϕ is provable by condensed detachment.

Note. The fact that A contains I and all the instances

of other axioms are provable does not mean that A is

D-complete. Let A = { ((ϕ → ϕ) → ϕ) → ϕ |
ϕ is a formula} ∪ {p → p}. Then A is not D-complete

since only formulae in A are provable.

It is evident that for any set A there exists its super-

set A� = {ϕ | ϕ is MP-provable in A } which is D-

complete and have the same MP-provable formulae as

A. However, such a set is infinite even for a finite

A, if A �= ∅. Moreover, there is a finite set A, na-

mely A = I, which does not have a finite superset

MP-equivalent to A.

Theorem 4.7 There is no finite set of axiomsA which is

D-complete and MP-equivalent to I.

Proof: Assume that such a set A = {ϕ1, . . . , ϕn},
consisting only of substitution instances of p → p,
exists. Since our setting is very special, we show that

any D-proof in A can be transformed to an equivalent

D-proof in A, proves the same formula, with very spe-

cial properties.

The condensed detachment of ϕ → ϕ and ψ is σ(ϕ) =
σ(ψ�), for the m.g.u. σ of ϕ and ψ�, which is a sui-

table variant of ψ. The key point is that a formula which

is the result of unification of ϕ and ψ� is itself the re-

sult of condensed detachment. Let ψ : χ1, . . . , χm mean

D(. . . (D(Dψχ1)χ2) . . .)χm. Such a notation repre-

sents a formula by presenting its proof. The following

three statements hold. All of them can be proved by

checking the properties of most general unifiers and how

the rule of condensed detachment behaves in our very

special setting.

1. ψ : χ1, . . . , χm is a variant of ψ : χ�
1, . . . , χ

�
k,

where χ�
1, . . . , χ

�
k, for k ≤ m, contains exactly

once all the members of χ1, . . . , χm in any order.
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2. All the following formulae are variants of each

other:

ψ1 : χ1, . . . , χk, (ψ2 : χk+1, . . . , χm), (1)

ψ1 : (ψ2 : χ1, . . . , χm), (2)

ψ1 : (ψ2 : χ
�
1, . . . , χ

�
l), (3)

where χ�
1, . . . , χ

�
l, for l ≤ m, contains exactly

once all the members of χ1, . . . , χm in any order.

3. ψ1 : (ψ2 : · · · (ψk : χ1, . . . , χm) · · · ) is a variant

of ψ�
1 : (ψ

�
2 : · · · (ψ�

l : χ1, . . . , χm) · · · ), where

ψ�
1, . . . , ψ

�
l, for l ≤ k, contains exactly once all

the members of ψ1, . . . , ψk in any order.

Consequently, any D-proof in A can be transformed to

a D-proof ψ1 : (ψ2 : · · · (ψk : χ1, . . . , χm) · · · ), where
k,m ≤ n; if i < j, ψi = ϕi� , and ψj = ϕj� then i

� < j�;
and if i < j, χi = ϕi� , and χj = ϕj� then i

� < j�. The-
refore there are only finitely many D-provable formulae

in A up to variants.

5. Conclusion

We presented the rule of condensed detachment and stu-

died Hilbert-style propositional calculi in which it is the

only deduction rule. We showed a connection between

such calculi and more standard calculi with the rules of

modus ponens and substitution. Although generally not

all the substitution instances of axioms are provable by

condensed detachment, there are sets of axioms in which

this is true and we provided some observations on such

calculi.

References

[1] E. J. Lemmon, C. A. Meredith, D. Meredith, A. N.

Prior, and I. Thomas, Calculi of pure strict impli-

cation. Canterbury University College, 1956.

[2] J. R. Hindley and D. Meredith, “Principal type-

schemes and condensed detachment,” The Journal

of Symbolic Logic, vol. 55, no. 1, pp. 90–105, 1990.

[3] J. A. Kalman, “Condensed detachment as a rule of

inference,” Studia Logica, vol. 42, no. 4, pp. 443–

451, 1983.

[4] J. A. Robinson, “A machine-oriented logic based

on the resolution principle,” Journal of the ACM,

vol. 12, pp. 23–41, January 1965.

[5] A. Urquhart, “The number of lines in Frege proofs

with substitution,” Archive for Mathematical Logic,

vol. 37, no. 1, pp. 15–19, 1997.

[6] N. D. Megill and M. W. Bunder, “Weaker D-

complete logics,” Logic Journal of IGPL, vol. 4,

no. 2, pp. 215–225, 1996.

PhD Conference ’11 40 ICS Prague


