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Czech Republic v.v.i., Prague 6, Suchdol 2, 165 02 Czech Republic ; e-mail:
rponec@icpf cas.cz ¥ Max Planck Institute for Chemical Physics of Solids,

Noethnitzer Strasse, 40, 01187, Dresden, Germany

Some time ago a simple analytical model allowing to evaluation of the
bond indices especially in metallic solids was proposed by one of us [1]. The
model was based on the straightforward generalization of the formula for the
calculation of delocalization or shared-electron distribution (SEDI) indices [2,3]

indices in ordinary molecules.
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This generalization is based on the straightforward parallel between discrete
molecular orbitals of isolated molecules and quasi-continuum of k-states in the
solid state. On the basis of this parallel, the original definition of the bond order

can be rewritten in the form (2)
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The practical use of the above formula can be best demonstrated on a simple
case of linear 1-D chain in which each atom contributes to the bonding by one

electron in a single 1s orbital ¥ . Under the above assumptions, the one-electron

orbitals of this system are given by the Bloch functions of the form (3)
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where N is the total number of the atoms, and the summation runs over the
individual atoms in the chain. Assuming now, without the loss of generality, the
orthogonality of atomic orbitals in the chain, the integrals over the atomic

domains in the formula (3) can be approximated as (4).
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Within this approximation, the formula for the bond index between the pair of

neighbouring atoms A and A+1 can be rewritten as (5)
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Using this approximation, and taking into account that the labels k can

alternatively be expressed as

B 27 2
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the formula (5) reduces to:
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The approximations underlying the above analytical model were checked in the
recent study [4] by comparing with the values resulting from the real solid state
calculations on a model chain of H atoms and such a comparison showed the
complete quantitative agreement between both approaches. Unfortunately, such
a nice agreement was observed just in the case of linear 1-D chain. In the case

of similar comparison for square-planar 2-D and simple cubic 3-D lattices, the
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systematic deviations of both approaches were observed which manifested
themselves in the systematic overestimation of the fraction of the mobile
electrons responsible for the build-up of the metallic character. The detailed
scrutiny of the observed deviations revealed that they mainly arise from too
straightforward replacement of the summation over occupied orbitals in the
general formula (1) by the integration over quasi-continuum of k-states in infinite
structures. This is not the problem in 1-D lattice where the integration was trivial
and involved just N/2 states of lowest energy (eq. 9), but the extension to more
dimensions is a bit more tricky and deserves a more detailed clarification

For this purpose let us discuss the in more details the simple case of NxN square

planar lattice. In such a case the Bloch functions are given by the formula (8)

1- y ik, :
wk(r)ZFZZekng(r_rm”) (8)
where
r,, = mai+ naj (9)

denotes the position of the individual atoms in the direct lattice and k is the wave

vector
27 27
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Assuming again the orthogonality of the basis orbitals in the lattice and using the

same approximation for the calculation of the integrals as in Eq. (5) one gets,
1 .
' . i(k=k"r, )
<k \k)A—Fe (11)

where r, denotes the position of an atom A in the array. Focusing on the
nearest neighbour atoms B whose positions are given by the vectors (14)
r, = Aai+ Aaj

A 1 2- . (12)
r, =(4, £ )ai+ 4,qj

the formula for the bond index W,z is given by (eq. (13))
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and the only what remains to be specified are the integration domains for the
individual components of k-vector. In the original model the limits of the

integration were arbitrarily chosen from 0 to N/2 for both components of k-vector.
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]
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The resulting value was about one half of the ,exact’ value 0.19 reported in the
study [4] and similar underestimation, by the factor of 4, was observed also for
3-D simple cubic lattice (0.025 vs 0.12 respectively). The detailed analysis of the
observed shortcomings of the original model has revealed that they are directly
related to the implications resulting from the arbitrary choice of the integration
limits. One of them is the systematic underestimation of the number of occupied
states but in addition to this there is another problem that concerns the possible
bias in the selection of occupied k-states. The selection of the integration
domains determines, namely, the shape of the Fermi surface so that arbitrarily
chosen intégfation limits may result in the di.storted form of this surface and,
consequently in the inclusion of some formally unoccupied k-states. To remedy
the above problem we recently suggested a simple criterion for the selection of
the occupied states based, similarly as in the case of 1-D lattice on the energy.
Thus, e.g., in the case of 2-D square planar lattice, the energy of the system is
given by (Eq. 18) [5]

E=a+2p(cos(k,a)+cos(k,a)) (15)

where B is the resonance integral describing in the tight binding approximation

the interaction between nearest neighbours. Based on the energy criterion, the
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choice of the occupied states is straightforward and manifests itself in imposing
certain restrictions on the integration domains. To demonstrate these restrictions
let us first rewrite, similarly as in the 1-D case, label k using the alternative

expressions
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If now, the points corresponding to individual states are plotted in the square
diagram with coordinates g and g the domains of positive and negative
energies concentrate into separate regions from which the limits for the
integration over occupied states are straightforwardly evident. In the case of the

above 2-D lattice, the corresponding diagram is shown in the Scheme |.

Scheme |
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in this scheme, the domain of ,occupied” states is highlighted in green while the
red domain correspond to energetically unfavorable states. Based on this
scheme, the formula (13) for the bond index between nearest neighbours can be

rewritten as (Eq. (16)),
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Actual calculations based on the formula (18) then give the value of the index
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W =2F 3 = 71;_? =0.164 (17)
which closely agrees with the value 0.16 resulting from the integration over Fermi
sphere [12] and reasonably close is also agreement with the value 0.19 resulting
from the real calculations [12]. We can thus see that the suggested energy
criterion together with the underlying implications for the specification of the
domain of integration over the occupied k-states is indeed able to improve
predictions of the original model and in spite its simplicity is indeed able to
provide reasonably realistic eastimate of the electron sharing in solids.

Unfortunately the above straightforward procedure for the determination of
the integration domains is not practically applicable in other cases. Thus, e.g.,
already in the case of simple cubic cell, the application of the energy criterion
specified by (Eq. 20)

E=a+ Zﬁ(cos(%r g+ cos(% g,)+ COS(%r g:)) (20)

shows that the shapes of the Fermi surface is much more tricky (Scheme II)

so that the explicit specification of the integration domains, required for the
application of the analytical approach, is impossible. To overcome this problem
we proposed as a feasible alternative the numerical calculations using the
explicit summation over N/2 of low energy states. Such an approach gives for the
index between nearest neighbour atoms the value 0.111, which well agrees with

the ,exact value 0.12 reported in the study [12]. This result is very important as
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it demonstrétes that the numerical remedy of the problems with the specification
of integration domains does indeed represents a feasible strategy for the
calculation of bond indices in solids and examples of the applications to other

types of unit cells will be discussed.
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