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Pod Vodárenskou věž́ı 2, 182 07 Prague 8, phone: +420 266 051 111, fax: +420 286 585 789,
e-mail:rohn@cs.cas.cz



Institute of Computer Science
Academy of Sciences of the Czech Republic

Norms of Interval Matrices
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Abstract:

Interval matrix norms induced by point matrix norms are introduced in the space of interval
matrices. It is shown that evaluating the interval matrix norm induced by a point matrix norm
‖ · ‖p is exponential (probably NP-hard) for p = 2 and requires computation of only one point
matrix norm for p ∈ {1,∞, (1,∞), F}.
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1 Introduction and notation

This paper is dedicated to definition and properties of interval matrix norms, a topic not
studied so far as far as known to the authors. In Section 2 we describe the space IRm×n of all
m× n interval matrices enriched with operations of sum and scalar multiplication. Then in
Section 3 we prove that given a matrix norm ‖ · ‖ in Rm×n, the mapping ||| · ||| : IRm×n → R
given by

|||A||| = sup{ ‖A‖ | A ∈ A } (1.1)

is a norm in IRm×n which we call an interval matrix norm induced by the point matrix norm
‖ · ‖. After summing up some properties of induced interval matrix norms in Sections 3 and
4, we prove in Section 5 that the norm (1.1) can always be computed as maximum of the
original norm ‖ · ‖ over the set of 2mn so-called vertex matrices, and in Section 6 we show
that this number can be decreased to 2m+n for the interval matrix norm ||| · |||2 induced by
the point matrix norm ‖ · ‖2. Both these results look pessimistic. But in the main result of
this paper we prove in Section 7 that for each A = [Ac −∆, Ac + ∆] ∈ IRm×n there holds

|||A|||p = ‖ |Ac|+ ∆‖p

for each p ∈ {1,∞, (1,∞), F}, so that for four of the five most (and, in fact, almost ex-
clusively) used norms the induced interval matrix norm can be computed by evaluation of
a single point matrix norm. This nice property is due to the fact that all the four norms
are absolute. In Conclusion we formulate two problems associated with induced norms that
remain to be solved.

The basic notation used is the following. Matrix inequalities, as A ≤ B, A > 0, and the
absolute value |A| of A are understood entrywise, and A ◦B denotes the Hadamard (entry-
wise) product of two matrices of the same size. Other notation is introduced throughout the
paper whenever needed.

2 The interval matrix space IRm×n

Let m, n be fixed positive integers. If A and A are two matrices in Rm×n, A ≤ A, then the
set of matrices

A = [A, A] = {A | A ≤ A ≤ A }
is called an interval matrix. In many cases it is advantageous to express the data in terms
of the center matrix Ac = 1

2(A + A) and of the radius matrix ∆ = 1
2(A−A), so that A can

also be given as
A = [Ac −∆, Ac + ∆].

The set of all m× n interval matrices

IRm×n = { [A, A] | A ≤ A, A, A ∈ Rm×n }
is called the m×n interval matrix space. Notice the difference between R and IR, the latter
symbol being constructed by merging the letters I (for “interval”) and R. In particular,
[A, A] ∈ IRm×n for each A ∈ Rm×n. To underline the distinction, we call the matrices from
Rm×n point matrices as opposites to interval matrices. Thus, A ∈ Rm×n is a point matrix
whereas [A,A] is an interval matrix.
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Next we introduce the sum and scalar multiplication operations in IRm×n. For each
A = [A, A] = [Ac −∆, Ac + ∆] ∈ IRm×n, B = [B,B] = [Bc −∆′, Bc + ∆′] ∈ IRm×n and for
each α ∈ R we define

A + B = {A + B | A ∈ A, B ∈ B },
αA = {αA | A ∈ A }.

It can be easily proved that

A + B = [Ac + Bc − (∆ + ∆′), Ac + Bc + (∆ + ∆′)] = [A + B, A + B], (2.1)

αA = [αAc − |α|∆, αAc + |α|∆] =
{ [αA,αA] if α ≥ 0,

[αA,αA] if α < 0
(2.2)

(see Alefeld and Herzberger [2] or Neumaier [8]). From (2.1), (2.2), it follows that the
sum and scalar multiplication of interval matrices possess the following properties for each
A,B, C ∈ IRm×n and each α, β ∈ R:

A + B = B + A,

(A + B) + C = A + (B + C),
A + [0, 0] = A,

1 ·A = A,

α(A + B) = αA + αB,

α(βA) = (αβ)A.

These are six of the eight properties defining a linear (vector) space, see [4]. The seventh
property, namely

(α + β)A = αA + βA,

unfortunately does not hold in general: indeed, in view of (2.2) this property is equivalent
to

[(α + β)Ac − |α + β|∆, (α + β)Ac + |α + β|∆]
= [(α + β)Ac − (|α|+ |β|)∆, (α + β)Ac + (|α|+ |β|)∆]

which implies
|α + β|∆ = (|α|+ |β|)∆,

and this is evidently not true: it is sufficient to take αβ < 0 and ∆ > 0 to get a counterex-
ample. The eighth property does not hold because for any A = [A, A] ∈ IRm×n with A 6= A
there does not exist a B = [B,B] ∈ IRm×n satisfying

A + B = [0, 0].

Indeed, this would mean A + B = A + B = 0 and hence (A − A) + (B − B) = 0, where
both the summands are nonnegative matrices, implying A = A and B = B, a contradiction.
Thus, IRm×n with the two operations introduced is not a linear, but a “semilinear” space.

3



We do not introduce an interval matrix product in IRm×n. The “obvious” way of defining
it as

AB = {AB | A ∈ A, B ∈ B }
(which would require that m = n) generally would not produce an interval matrix as a
result, and defining it as A¯B (the interval arithmetic product, see [2]) would not suit our
purposes.

3 Interval matrix norms

The fact that IRm×n is a sublinear, not a linear, space does not preclude a possibility of
introducing a norm there. A function ||| · ||| : IRm×n → R is called an interval matrix norm
in IRm×n if for each A, B ∈ IRm×n, α ∈ R it satisfies (a)-(c):

(a) |||A||| ≥ 0, and |||A||| = 0 if and only if A = [0, 0],

(b) |||A + B||| ≤ |||A||| + |||B|||,
(c) |||αA||| = |α||||A|||.

As the reader might have noticed, we use the notation ||| · ||| for interval matrix norms in
IRm×n as opposed to point matrix norms in Rm×n denoted by ‖ · ‖.

The following theorem shows a way how to construct interval matrix norms from point
matrix norms.

Theorem 1. For any point matrix norm ‖ · ‖ in Rm×n, the function ||| · ||| : IRm×n → R
defined by

|||A||| = sup{ ‖A‖ | A ∈ A } (3.1)

is an interval matrix norm in IRm×n.

Proof. We shall prove that the function ||| · ||| given by (3.1) possesses the above properties
(a)-(c). Let A, B ∈ IRm×n and α ∈ R. Then:

(a) Taking an arbitrary A ∈ A, we have |||A||| ≥ ‖A‖ ≥ 0. If |||A||| = 0, then by (3.1) we
have ‖A‖ = 0 for each A ∈ A, hence A = {0}, which is only possible if A = [0, 0].

(b) By definition of the sum of interval matrices and by the triangle inequality for the
norm ‖ · ‖ we have

|||A + B||| = sup{ ‖A + B‖ | A ∈ A, B ∈ B } ≤ sup{ ‖A‖ + ‖B‖ | A ∈ A, B ∈ B }
≤ sup{ ‖A‖ | A ∈ A }+ sup{ ‖B‖ | B ∈ B } = |||A||| + |||B|||.

(c) Similarly, by the definition of scalar multiplication and by the homogeneity of the norm
‖ · ‖ we have

|||αA||| = sup{ ‖αA‖ | A ∈ A } = |α| sup{ ‖A‖ | A ∈ A } = |α| |||A|||,
which concludes the proof. 2

We shall say that the interval matrix norm ||| · ||| defined by (3.1) is induced by the point
matrix norm ‖ · ‖. An interval matrix norm induced by some point matrix norm is called
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simply an induced interval matrix norm. If the point matrix norm is denoted by ‖A‖α for
some α, then the induced interval matrix norm is denoted again by |||A|||α.

Since each norm is a continuous function (Horn and Johnson [7]) and each interval matrix is
a compact set, the supremum in (3.1) is attained as maximum, hence (3.1) can be equivalently
rewritten as

|||A||| = max{ ‖A‖ | A ∈ A }. (3.2)

It follows from the definition of an induced matrix norm that for each A,B ∈ IRm×n,
A ⊆ B implies |||A||| ≤ |||B|||. Also, for every two induced matrix norms |||A|||α and |||A|||β
there exist positive constants c and d such that

c |||A|||β ≤ |||A|||α ≤ d |||A|||β

holds for each A ∈ IRm×n. This is simply the assertion of equivalence of norms, see [7].
If m = n, then a point matrix norm is called consistent if it satisfies ‖AB‖ ≤ ‖A‖‖B‖

for each A,B ∈ Rn×n (m = n is needed here for the matrix product to be feasible). Since
we have not introduced matrix multiplication in the space IRn×n, we define this notion in
another way. We say that an interval matrix norm ||| · ||| induced by a point matrix norm
‖ · ‖ is consistent if it satisfies

max
A∈A, B∈B

‖AB‖ ≤ |||A||||||B||| (3.3)

for each A, B ∈ IRn×n.

Theorem 2. If ‖ · ‖ is a consistent point matrix norm, then ||| · ||| is a consistent induced
interval matrix norm.

Proof. If A ∈ A ∈ IRn×n, B ∈ B ∈ IRn×n, then

‖AB‖ ≤ ‖A‖‖B‖ ≤ |||A||||||B|||

and taking the maximum over A,B gives (3.3). 2

4 Characterization of induced norms

In this section we are going to characterize induced matrix norms in terms of their own
(without use of inducing point matrix norms). As the first step towards this goal we show
that the inducing point matrix norm can be reconstructed from the induced interval matrix
norm.

Theorem 3. If ||| · ||| is an induced interval matrix norm in IRm×n, then the inducing
matrix norm satisfies

‖A‖ = |||[A,A]||| (4.1)

for each A ∈ Rm×n.
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Proof. For each A ∈ Rm×n we have [A,A] = {A}, hence |||[A,A]||| = ‖A‖ by (3.1), which
is (4.1). 2

Hence, the inducing norm can be fully reconstructed from the induced norm and therefore
it is unique: different point matrix norms induce different interval matrix norms.

Now we give a characterization of induced interval matrix norms.

Theorem 4. A norm ||| · ||| in IRm×n is an induced interval matrix norm if and only if it
satisfies

|||A||| = max{ |||[A,A]||| | A ∈ A } (4.2)

for each A ∈ IRm×n.

Proof. If ||| · ||| is an induced interval matrix norm, then

‖A‖ = |||[A,A]||| (4.3)

is the inducing point matrix norm by Theorem 3 and (3.2) implies (4.2). Conversely, if (4.2)
holds for each A ∈ IRm×n, then the function ‖ · ‖ defined by (4.3) is a point matrix norm
in Rm×n (because ||| · ||| is a norm in IRm×n by assumption), and (4.2) implies (3.2), so that
||| · ||| is induced. 2

5 Computing the norms I: the general case

Let E denote the m×n matrix of all ones. Given an A = [Ac−∆, Ac +∆] = [A, A] ∈ IRm×n,
for each Z satisfying |Z| = E (i.e., a ±1-matrix in Rm×n) define

AZ = Ac + Z ◦∆,

where “◦” denotes the Hadamard (entrywise) product. It is obvious that (AZ)ij = Aij if
Zij = 1 and (AZ)ij = Aij if Zij = −1 for each i, j, so that AZ ∈ A. If we view A as a
rectangle in Rmn, then the matrices AZ , |Z| = E are exactly the vertices of this rectangle;
this is why they are called vertex matrices. Notice that if ∆ > 0, then there are exactly 2mn

vertex matrices. In the next theorem we show that any induced interval matrix norm can
be expressed (and, if mn is small, also computed) via vertex matrices.

Theorem 5. If an interval matrix norm ||| · ||| is induced by a point matrix norm ‖ · ‖,
then

|||A||| = max
|Z|=E

‖Ac + Z ◦∆‖ (5.1)

for each A ∈ IRm×n.

Proof. If we again view A as a rectangle in Rmn, then we can use the fact that each point
of this rectangle can be expressed as a convex combination of its vertices. Hence each A ∈ A
can be written in the form

A =
∑

|Z|=E

λZAZ ,
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where all the λZ ’s are nonnegative and satisfy
∑

|Z|=E

λZ = 1.

Now we have

‖A‖ ≤
∑

|Z|=E

λZ‖AZ‖ ≤ ( max
|Z|=E

‖AZ‖)
∑

|Z|=E

λZ = max
|Z|=E

‖AZ‖,

so that, by definition of the induced interval matrix norm,

|||A||| ≤ max
|Z|=E

‖AZ‖.

On the other hand, AZ ∈ A for each Z which gives that ‖AZ‖ ≤ |||A|||, so that

max
|Z|=E

‖AZ‖ ≤ |||A|||.

Consequently
|||A||| = max

|Z|=E
‖AZ‖ = max

|Z|=E
‖Ac + Z ◦∆‖

as claimed. 2

The formula (5.1) requires norms of up to 2mn point matrices to be computed. In the next
two sections we shall show that this number can be reduced for particular norms.

6 Computing the norms II: the case of ||| · |||2
As is well known [6], the matrix norm ‖A‖2 is defined by

‖A‖2 = max
‖x‖2=1

‖Ax‖2

where ‖x‖2 =
√

xT x, and satisfies

‖A‖2 =
√

%(AT A) = σmax(A),

which is why it is called the spectral norm. In this section we derive a formula for computing
the induced interval matrix norm |||A|||2. To this end we shall need yet another formula for
‖A‖2. This formula appears in Golub and van Loan [5], Horn and Johnson [7], and Stewart
and Sun [9] in the guise of a formula for σmax(A), everywhere without proof. So we supply
a proof here for the sake of completeness.

Theorem 6. For each matrix A ∈ Rm×n we have

‖A‖2 = max
‖x1‖2=‖x2‖2=1

xT
1 Ax2. (6.1)

7



Proof. Let A = XSY T be a singular value decomposition of A, q = min(m,n), and let
x1 ∈ Rm, x2 ∈ Rn be vectors with ‖x1‖2 = 1 and ‖x2‖2 = 1. Put x′1 = XT x1, x′2 = Y T x2,
then ‖x′1‖2 = 1 and ‖x′2‖2 = 1 since X and Y are orthogonal matrices, and let x′′1 = ((x′1)i)

q
i=1,

x′′2 = ((x′2)i)
q
i=1. Then

xT
1 Ax2 = x′T1 Sx′2 =

q∑

i=1

Sii(x′1)i(x′2)i ≤ S11

q∑

i=1

|(x′1)i||(x′2)i| = σmax(A)|x′′1|T |x′′2|

≤ ‖A‖2‖x′′1‖2‖x′′2‖2 ≤ ‖A‖2‖x′1‖2‖x′2‖2 = ‖A‖2

where we have used the Cauchy-Schwarz inequality. Hence,

max
‖x1‖2=‖x2‖2=1

xT
1 Ax2 ≤ ‖A‖2. (6.2)

On the other hand, if we put x′′′1 = Xe
(1)
m , x′′′2 = Y e

(1)
n where e

(1)
m is the first column of the

m×m identity matrix and e
(1)
n is the first column of the n× n identity matrix, then again

‖x′′′1 ‖2 = ‖x′′′2 ‖2 = 1 and

x′′′T1 Ax′′′2 = e(1)T
m Se(1)

n = S11 = ‖A‖2,

hence the upper bound in (6.2) is attained which proves (6.1). 2

The following theorem was proved (again in the guise of σmax on both sides of (6.3)) by
Ahn and Chen [1]. We give here another proof based on Theorem 6. We use the notation
em = (1, 1, . . . , 1)T ∈ Rm, en = (1, 1, . . . , 1)T ∈ Rn.

Theorem 7. For each A ∈ IRm×n we have

|||A|||2 = max
|y|=em, |z|=en

‖Ac + (yzT ) ◦∆‖2. (6.3)

Proof. Let A ∈ A, and let x1 ∈ Rm, x2 ∈ Rn with ‖x1‖2 = ‖x2‖2 = 1. Then

xT
1 Ax2 = xT

1 Acx2 + xT
1 (A−Ac)x2 ≤ xT

1 Acx2 + |x1|T ∆|x2|. (6.4)

Define y by yi = 1 if (x1)i ≥ 0 and yi = −1 otherwise (i = 1, . . . , m) and similarly z by
zj = 1 if (x2)i ≥ 0 and zj = −1 otherwise (j = 1, . . . , n), then |y| = em, |z| = en, and
|x1| = diag(y)x1, |x2| = diag(z)x2, hence

xT
1 Acx2 + |x1|T ∆|x2| = xT

1 (Ac + diag(y)∆diag(z))x2. (6.5)

Now,
(diag(y)∆diag(z))ij = yizj∆ij = ((yzT ) ◦∆)ij

for each i, j, hence diag(y)∆diag(z) = (yzT ) ◦ ∆ and from (6.4), (6.5) and Theorem 6 we
obtain

xT
1 Ax2 ≤ xT

1 (Ac + (yzT ) ◦∆)x2 ≤ ‖Ac + (yzT ) ◦∆‖2 ≤ max
|y|=em, |z|=en

‖Ac + (yzT ) ◦∆‖2.
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Again applying Theorem 6, we get

‖A‖2 ≤ max
|y|=em, |z|=en

‖Ac + (yzT ) ◦∆‖2

for each A ∈ A, hence by definition of the induced interval matrix norm we finally have that

|||A|||2 ≤ max
|y|=em, |z|=en

‖Ac + (yzT ) ◦∆‖2. (6.6)

On the other hand, each matrix of the form Ac + (yzT ) ◦∆, |y| = em, |z| = en belongs to A,
hence

max
|y|=em, |z|=en

‖Ac + (yzT ) ◦∆‖2 ≤ |||A|||2 (6.7)

and (6.6), (6.7) finally yield

|||A|||2 = max
|y|=em, |z|=en

‖Ac + (yzT ) ◦∆‖2

which concludes the proof. 2

Since |y| = em and |z| = en, yzT is a ±1-matrix and the formula (6.3) is of the same form
as (5.1), but it requires computation of “only” 2m+n point matrix norms compared to 2mn

of them in (5.1). Nevertheless, the number remains exponential. This leads us to conjecture
that computation of ||| · |||2 might be NP-hard.

7 Computing the norms III: absolute norms

Beside the 2-norm, the following four norms are used almost exclusively both in theory and
practice:

‖A‖1 = max
j

∑

i

|aij |,

‖A‖∞ = max
i

∑

j

|aij |,

‖A‖1,∞ = max
ij

|aij |,

‖A‖F =
√∑

ij

a2
ij .

Of them, only the third norm is not consistent, but can be made such by premultiplying by
n (Higham [6]). All four of them share a simple, yet for us decisive property:

‖ |A| ‖ = ‖A‖ (7.1)

for each A ∈ Rm×n (note: on the left-hand side of (7.1) there stands the norm of the absolute
value of A, not an induced norm). Norms satisfying (7.1) are called absolute, and they possess
the following property [7].
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Theorem 8. A norm ‖ · ‖ in Rm×n is absolute if and only if for each A,B ∈ Rm×n,
|A| ≤ |B| implies ‖A‖ ≤ ‖B‖.

Let us define the sign matrix of Ac by (sgn(Ac))ij = 1 if (Ac)ij ≥ 0 and (sgn(Ac))ij = −1
otherwise, so that sgn(Ac) is a ±1-matrix. Now we can formulate a theorem which we
consider the main contribution of this paper.

Theorem 9. If a point matrix norm ‖ · ‖ in Rm×n is absolute, then the induced interval
matrix norm ||| · ||| satisfies

|||A||| = ‖Ac + sgn(Ac) ◦∆‖ = ‖ |Ac|+ ∆‖ (7.2)

for each A ∈ IRm×n.

Proof. For each A ∈ A we have

|A| = |Ac + A−Ac| ≤ |Ac|+ ∆ = | |Ac|+ ∆ |,

hence, by Theorem 8,

‖A‖ = ‖ |A| ‖ ≤ ‖ | |Ac|+ ∆ | ‖ = ‖ |Ac|+ ∆‖

and
|||A||| = max

A∈A
‖A‖ ≤ ‖ |Ac|+ ∆‖. (7.3)

Now,
|Ac|+ ∆ = sgn(Ac) ◦Ac + ∆ = sgn(Ac) ◦ (Ac + sgn(Ac) ◦∆)

hence

|Ac|+ ∆ = | |Ac|+ ∆ | = |sgn(Ac) ◦ (Ac + sgn(Ac) ◦∆)| = |Ac + sgn(Ac) ◦∆|

and
‖ |Ac|+ ∆‖ = ‖ |Ac + sgn(Ac) ◦∆| ‖ = ‖Ac + sgn(Ac) ◦∆‖

where Ac + sgn(Ac) ◦∆ ∈ A, hence the upper bound in (7.3) is attained, which gives (7.2).
2

Thus, in (7.2) the right-hand side term gives a simple expression of the result whereas the
middle term yields an explicit form of the matrix in A at which |||A||| is attained. Notice
that the matrix is again of the form Ac +Z ◦∆, where Z is a ±1-matrix, but this time norm
of only one matrix is to be computed compared with 2m+n of them for the norm ||| · |||2.

To be perfectly clear, we give here explicit results for the above-quoted four absolute
norms. This is a direct consequence of Theorem 9.

Theorem 10. For each A = [Ac −∆, Ac + ∆] ∈ IRm×n we have

|||A|||1 = ‖ |Ac|+ ∆‖1,

|||A|||∞ = ‖ |Ac|+ ∆‖∞,

|||A|||1,∞ = ‖ |Ac|+ ∆‖1,∞,

|||A|||F = ‖ |Ac|+ ∆‖F .
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8 Conclusion

We have introduced interval matrix norms and presented formulae for computing those
induced by the five most frequently used point matrix norms. This is certainly not all what
can be said of the subject. In particular, two problems have remained unsolved:

1. Construct an interval matrix norm which is not induced by any point matrix norm.

2. Prove that computing ||| · |||2 is NP-hard (if true).

This can become a subject of future research.

11



Bibliography

[1] H.-S. Ahn and Y. Chen, Exact maximum singular value calculation of an interval matrix,
IEEE Transactions on Automatic Control, 52 (2007), pp. 510–514. 8

[2] G. Alefeld and J. Herzberger, Introduction to Interval Computations, Academic Press,
New York, 1983. 3, 4

[3] W. Barth and E. Nuding, Optimale Lösung von Intervallgleichungssystemen, Computing,
12 (1974), pp. 117–125. 1

[4] S. H. Friedberg, A. J. Insel, and L. E. Spence, Linear Algebra, Prentice Hall, Upper
Saddle River, 1997. 3

[5] G. H. Golub and C. F. van Loan, Matrix Computations, The Johns Hopkins University
Press, Baltimore, 1996. 7

[6] N. J. Higham, Accuracy and Stability of Numerical Algorithms, SIAM, Philadelphia,
1996. 7, 9

[7] R. A. Horn and C. R. Johnson, Matrix Analysis, Cambridge University Press, Cambridge,
1985. 5, 7, 9

[8] A. Neumaier, Interval Methods for Systems of Equations, Cambridge University Press,
Cambridge, 1990. 3

[9] G. W. Stewart and J. Sun, Matrix Perturbation Theory, Academic Press, San Diego,
1990. 7

12


