
A conjugate directions approach to improve the limited-memory BFGS method
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Abstract:

Simple modifications of the limited-memory BFGS method (L-BFGS) for large scale uncon-
strained optimization are considered, which consist in corrections (derived from the idea of
conjugate directions) of the used difference vectors, utilizing information from the preceding
iteration. In case of quadratic objective functions, the improvement of convergence is the best
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experiments indicate that the new method often improves the L-BFGS method significantly.
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1 Introduction

In this report we propose some modifications of the L-BFGS method (see [6], [11]) for
large scale unconstrained optimization

min f(x) : x ∈ RN ,

where it is assumed that the problem function f : RN →R is differentiable.
Similarly as in the multi-step quasi-Newton methods (see e.g. [10]), we utilize infor-

mation from the preceding iteration to correct the used difference vectors a change the
quasi-Newton condition correspondingly. However, while the multi-step methods derive
the corrections of the difference vectors from various interpolation methods, our approach
is based on the idea of conjugate directions (see e.g. [4], [12]). Note that some of these
thoughts are presented in our report [14] (in the second family of methods).

The L-BFGS method belongs to the variable metric (VM) or quasi-Newton line search
methods, see [4], [9]. They start with an initial point x0 ∈ RN and generate iterations
xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0, where dk is the direction
vector and tk > 0 is a stepsize, usually chosen in such a way that

fk+1 − fk ≤ ε1tkg
T
k dk, gT

k+1dk ≥ ε2g
T
k dk, (1.1)

k ≥ 0, where 0 < ε1 < 1/2, ε1 < ε2 < 1, fk = f(xk), gk = ∇f(xk) and dk = −Hkgk

with a symmetric positive definite matrix Hk; usually H0 is a multiple of I and Hk+1 is
obtained from Hk by a VM update to satisfy the quasi-Newton condition

Hk+1yk = sk (1.2)

(see [4], [9]), where yk = gk+1 − gk, k ≥ 0. For k ≥ 0 we denote

bk = sT
kyk, Vk = I − (1/bk)sky

T
k , Bk = H−1

k

(note that bk > 0 for gk 6= 0 by (1.1)).
Among VM methods, the BFGS method belongs to the most efficient; the update

formula can be written in the following quasi-product form, see [4], [9], [12],

Hk+1 = (1/bk)sks
T
k + VkHkV

T
k , (1.3)

k ≥ 0, on which the L-BFGS method – a limited-memory adaptation of the BFGS method
– is based. An advantage of this form consists in the fact that instead of N ×N matrix
Hk, only the last m̃ + 1 couples {sj, yj}k

j=k−m̃ can be stored, where

m̃ = min(k, m−1) (1.4)

and m ≥ 1 is a given parameter. The direction vector is computed by the Strang
recurrences, see [11], and still satisfies dk+1 = −Hk+1gk+1, k ≥ 0, but matrix Hk+1

has only theoretical significance here and is not formed explicitly; it can be defined by
Hk+1 = Hk+1

k+1 , where auxiliary matrices {Hk+1
i }k+1

i=k−m̃ (also not formed explicitly) satisfy

Hk+1
k−m̃ = (bk/|yk|2)I, (1.5)

Hk+1
i+1 = (1/bi)sis

T
i + ViH

k+1
i V T

i , k − m̃ ≤ i ≤ k . (1.6)

1



The concept of the conjugacy plays important role in optimization methods based on
quadratic models, see e.g. [4], [12]. The conjugacy of consecutive direction vectors sk,
sk+1 with respect to matrix Bk+1 can be easily achieved e.g. by means of suitable vector
corrections. They can be understood as corrections for exact line searches, since relation
dk+1 = −Hk+1gk+1 implies

sT
k Bk+1sk+1 = −tk+1 sT

kgk+1 ,

k ≥ 0, therefore unit stepsizes in corrected methods for quadratic objective functions
have similar position as exact line searches in classical methods, see Section 3.

However, not every correction for the conjugacy improves efficiency. E.g. addition
a multiple of yk to gk+1, before the new direction vector is computed, seems to be ad-
vantageous, since in this way we can utilize properties of the line search procedure.
Setting g̃k+1 = gk+1 − (sT

kgk+1/bk)yk and d̃k+1 = −Hk+1g̃k+1 for some k ≥ 0, we get
sT

k Bk+1d̃k+1 = −sT
k g̃k+1 = 0, but also

−d̃k+1 = Hk+1gk+1 − sT
k gk+1

bk

Hk+1yk =
(
Hk+1 − sks

T
k

bk

)
gk+1

by (1.2), i.e. by (1.3) this direction vector corresponds to singular VM matrix VkHkV
T
k ,

which is inconvenient for the line search and gives bad results.
In this report we will investigate such corrections of vectors sk, yk which provide

conjugacy of consecutive direction vectors and show that update VM matrices constructed
by means of corrected vectors have some positive properties and that this approach
can improve results significantly. Thus we will define corrected quantities s̄k, ȳk and
consequently b̄k and V̄k, k ≥ 0, by s̄0 = s0, ȳ0 = y0, b̄0 = b0, V̄0 = V0 and

s̄k = sk − αks̄k−1, ȳk = yk − βkȳk−1, b̄k = s̄T
k ȳk, V̄k = I − (1/b̄k)s̄kȳ

T
k , (1.7)

k > 0, with such αk, βk ∈ R that b̄k > 0. Correspondingly, we will use direction vector
dk = −H̄kgk, k ≥ 0, instead of −Hkgk, where H̄0 = I and matrix H̄k+1 = H̄k+1

k+1 is
obtained by

H̄k+1
k−m̃ = (bk/|yk|2)I, (1.8)

H̄k+1
i+1 = (1/b̄i)s̄is̄

T
i + V̄iH̄

k+1
i V̄ T

i , k − m̃ ≤ i ≤ k . (1.9)

Note that matrix H̄k+1 satisfies the quasi-Newton condition H̄k+1ȳk = s̄k and is ob-
tained by the last BFGS update (1.9) of matrix H̄k+1

k , which satisfies H̄k+1
k ȳk−1 = s̄k−1,

k ≥ 1, for m > 1, as we can see from (1.9) with i = k − 1.
We will use the following notation

āk+1
i = ȳT

i H̄k+1
i ȳi, c̄k+1

i = s̄T
i B̄k+1

i s̄i, B̄k+1
i = (H̄k+1

i )−1, B̄k = H̄−1
k , (1.10)

k ≥ 0, i = k−m̃, . . . , k+1; note that always āk+1
i c̄k+1

i ≥ b̄2
i by the the Schwarz inequality.

To analyse the particular BFGS updates (1.9) in the simplified form, we omit index
i, replace index i + 1 by symbol +, index i− 1 by symbol − and write H̄, H̄+, H̄−, ā, c̄
instead of H̄k+1

i , H̄k+1
i+1 , H̄k+1

i−1 , āk+1
i , c̄k+1

i .
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In Section 2 we investigate the standard BFGS update (1.9) (in the simplified form)

H̄+ = (1/b̄)s̄s̄T + V̄ H̄V̄ T (1.11)

of any symmetric positive definite matrix H̄ with corrected difference vectors from the
point of view of conjugacy and discuss the choice of parameters. In Section 3 we present
some interesting properties of the corrected BFGS update (1.11) and the corrected
L-BFGS method for quadratic functions. Application to limited-memory methods and
the corresponding algorithm are described in Section 4, and global convergence of the
algorithm is established in Section 5. Numerical results are reported in Section 6.

2 The BFGS update with corrected vectors

In this section we will investigate influence of correction parameters α, β on properties of
update (1.11). Using another formulation of conjugacy property, we will derive a formula
for parameter α. As regards parameter β, we will discuss two basic variants of its choice
and their advantages. First we reformulate conjugacy property in another form.

The following lemma shows that, under some assumptions, the conjugacy of difference
vectors s̄, s̄− with respect to matrices B̄, B̄+ is equivalent to the property of H̄+ that it
satisfies not only the quasi-Newton condition H̄+ȳ = s̄, but also H̄+B̄s̄− = s̄−.

Lemma 2.1. Let H̄ be any symmetric positive definite matrix. If vectors s̄, H̄ȳ are
linearly independent then matrix H̄+ given by update (1.11) of H̄ with b̄ > 0 satisfies
H̄+B̄s̄− = s̄− if and only if vectors s̄, s̄− are conjugate to matrices B̄, B̄+.

Proof. Let H̄+B̄s̄− = s̄−. By V̄ TB̄s̄− = B̄s̄−−(s̄TB̄s̄−/b̄) ȳ, from (1.11) we obtain

H̄+B̄s̄− = (s̄TB̄s̄−/b̄) s̄ +
(
I − (1/b̄)s̄ȳT

)(
s̄−−(s̄TB̄s̄−/b̄) H̄ȳ

)

= s̄− +
[ s̄TB̄s̄−−s̄T

−ȳ

b̄
+

ā

b̄2
s̄TB̄s̄−

]
s̄−

[ s̄TB̄s̄−
b̄

]
H̄ȳ.

To have H̄+B̄s̄− = s̄−, both expressions in brackets must be equal to zero in view of
linear independency of s̄, H̄ȳ, i.e. s̄TB̄s̄− = s̄T

−ȳ = 0; since H̄+ȳ = s̄ by (1.11), this is
equivalent to s̄T B̄s̄− = s̄T B̄+s̄− = 0.

On the contrary, if s̄TB̄s̄− = s̄T
−ȳ = 0 then (1.11) implies H̄+B̄s̄−= V̄ s̄−= s̄−. 2

We focus here on the case when the quasi-Newton condition H̄ȳ−= s̄− is satisfied and
thus we can replace condition H̄+B̄s̄− = s̄− in Lemma 2.1 by H̄+ȳ− = s̄− and write s̄Tȳ−
instead of s̄TB̄s̄−. Note that in case of the limited-memory methods which define matrix
H̄+ by relations (1.8), (1.9), parameters α, β are determined during the last update.
Then, considering the form (1.11), condition H̄ȳ− = s̄− represents the quasi-Newton
condition from the preceding update, which is satisfied for m > 1, see Section 1.

Formulation of conjugacy as in Lemma 2.1 enables us to distinguish roles of products
s̄T ȳ−, s̄T

−ȳ (and consequently, parameters α, β).

Lemma 2.2. Let H̄ be any symmetric positive definite matrix with H̄ȳ− = s̄−, H̄+ be
given by update (1.11) of H̄ with b̄ > 0 and ∆1 = (H̄+ȳ−− s̄−)T B̄+(H̄+ȳ−− s̄−). Then

∆1 =
[
(s̄T
−ȳ−s̄Tȳ−)2 + (s̄Tȳ−)2(ā/b̄− b̄/c̄)

]
/b̄ , (2.1)
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where ā/b̄ ≥ b̄/c̄, with ā/b̄ = b̄/c̄ only in case of dependency of vectors s̄, H̄ȳ.

Proof. Since relation (1.11) is the standard BFGS update with s̄, ȳ instead of s, y, it
holds (see [4], [9])

H̄+ = H̄ +
(
1 +

ā

b̄

) s̄s̄T

b̄
− H̄ȳs̄T + s̄ȳT H̄

b̄
, B̄+ = B̄ +

ȳȳT

b̄
− B̄s̄s̄T B̄

c̄
, (2.2)

which yields

ȳT
−H̄+ȳ− = s̄T

−ȳ− +
(
1 + ā/b̄

)
(s̄Tȳ−)2/b̄− 2s̄Tȳ− s̄T

−ȳ/b̄ , (2.3)

s̄T
−B̄+s̄− = s̄T

−ȳ− + (s̄T
−ȳ)2/b̄− (s̄Tȳ−)2/c̄ . (2.4)

Setting it to ∆1 = ȳT
−H̄+ȳ− + s̄T

−B̄+s̄− − 2s̄T
−ȳ−, we obtain (2.1). The rest follows from

the Schwarz inequality. 2

If function f is close to a quadratic function (e.g. in the proximity to minimum)
then value s̄T

−ȳ − s̄Tȳ− is obviously close to zero, but value ā/b̄ − b̄/c̄ ≥ 0 need not be
small. Therefore we can see from relation (2.1) that mainly value s̄Tȳ− should be close
to zero, to have ∆1 small. In view of this, the choice α = sTȳ−/b̄−, for which s̄Tȳ− = 0,
appears to be very suitable (which is in accordance with our numerical experiments) and
is considered in the rest of this section, while the choice of β is not so straightforward.

By Lemma 2.2, the natural basic choice of parameter β is β = s̄T
−y/b̄−, which yields

s̄T
−ȳ = 0 and thus H̄+ȳ−= s̄− by ∆1 = 0. This value has additional interesting properties.

Theorem 2.1. Let H̄ be any symmetric positive definite matrix with H̄ȳ−= s̄− and H̄+

be given by update (1.11) of H̄ with b̄ > 0. If α = sTȳ−/b̄− then s̄Tȳ− = 0, b̄ = b−α s̄T
−y

and both value ā and the condition number of matrix H̄1/2B̄+H̄1/2 as functions of β are
minimized by the choice β = s̄T

−y/b̄−.

Proof. If α = sTȳ−/b̄− then obviously s̄Tȳ− = 0, which yields b̄ = s̄Ty = b− αs̄T
−y.

Value ā = yT H̄y − 2βs̄T
−y + β2b̄− is obviously minimized by β = s̄T

−y/b̄−. Denoting
A = H̄1/2B̄+H̄1/2, from (2.2) we get

A = I + (1/b̄)H̄1/2ȳȳT H̄1/2 − (1/c̄)B̄1/2s̄s̄T B̄1/2 .

Since Tr(A) = N − 1 + ā/b̄ and det(A) = b̄/c̄ by identity det(I + uuT − vvT ) =
(1 + |u|2)(1− |v|2) + (uT v)2, u ∈ RN , v ∈ RN , two nonunit eigenvalues λ1 ≥ λ2 of A are

roots of the quadratic equation 0 = λ2−(1+ā/b̄)λ+b̄/c̄
∆
= ψ(λ). From ψ(1)= b̄/c̄−ā/b̄ ≤ 0

(see Lemma 2.2) and b̄/c̄ > 0 we can deduce that λ1 ≥ 1 ≥ λ2 > 0. Values b̄, c̄ are
independent of β and thus the condition number of A

λ1/λ2 = λ2
1/(λ1λ2) =

[
1 + ā/b̄ +

√
(1 + ā/b̄)2 − 4b̄/c̄

]2

c̄/(4b̄)

is minimized together with ā by β = s̄T
−y/b̄−. 2

Satisfaction of condition H̄+ȳ− = s̄− (implied by the choice β = s̄T
−y/b̄−) also guar-

antees that matrix H̄+ is closer to H̄ than to H̄− in some sense, as we can see from the
following theorem with H̄−, H̄, s̄−, ȳ− instead of H̄, H̄+, s̄, ȳ and G̃ = H̄−1

+ (‖.‖F denotes
the Frobenius matrix norm). Note that similar formulas with inverse VM matrices Bk+1,
Bk can be found in [13] for the BFGS update or in [5] for more general updates.
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Theorem 2.2. Let H̄ be any symmetric positive definite matrix, matrix H̄+ be given by
update (1.11) of H̄ with b̄ > 0, G̃ be any symmetric positive definite matrix satisfying
G̃s̄ = ȳ, W+ = G̃1/2H̄+G̃1/2 and W = G̃1/2H̄G̃1/2. Then

‖I −W+‖2
F − ‖I −W‖2

F = −‖W+ −W‖2
F ≤ − (

ā/b̄− 1
)2

. (2.5)

Proof. Denoting w= G̃1/2s̄= G̃−1/2ȳ and M = W − I, we can rewrite update (1.11)

W+ = (1/|w|2)wwT + PWP = I + PMP, P = I − (1/|w|2)wwT , (2.6)

by |w|2 = b̄ and P 2 = P . Using ‖I −W+‖2
F = ‖PMP‖2

F = Tr(PMPM), we get firstly

‖I −W+‖2
F − ‖M‖2

F = 2Tr(PMPM)− ‖PMP‖2
F − ‖M‖2

F = −‖PMP −M‖2
F , (2.7)

which is equality in (2.5) by W+ −W = W+ − I − (W − I) = PMP −M , and secondly

‖PMP −M‖2
F = ‖M‖2

F − Tr(PMPM) = ‖M‖2
F − Tr

([
M−(1/|w|2)wwTM

]2
)

= Tr
(
wwTM2 + MwwTM − [

wTMw/|w|2] wwTM
)
/|w|2

= 2|Mw|2/|w|2 − (wTMw)2/|w|4 ≥ (wTMw)2/|w|4

by the Schwarz inequality. Since |w|2 = b̄ and wTMw = ā− b̄, we obtain (2.5). 2

Although the choice β = s̄T
−y/b̄− gives good results, it cannot be recommended gen-

erally. The following lemma indicates that β should also be near to α, if we want to have
|H̄+y − s| small. Therefore value β between s̄T

−y/b̄−, sT ȳ−/b̄− can be more suitable.

Lemma 2.3. Let H̄ be any symmetric positive definite matrix with H̄ȳ−= s̄− and matrix
H̄+ be given by update (1.11) of H̄ with b̄ > 0. If α = sTȳ−/b̄− then ∆1 = (s̄T

−ȳ)2/b̄ and

∆2
∆
= (H̄+y − s)T B̄+(H̄+y − s) = α2∆1 + (α− β)2b̄− . (2.8)

Proof. From (2.1) we get ∆1 = (s̄T
−ȳ)2/b̄ and (2.3) - (2.4) imply ȳT

−H̄+ȳ− = b̄− and
s̄T
−B̄+s̄−= b̄−+ ∆1. By H̄+ȳ = s̄ we obtain

H̄+y − s = H̄+ȳ + βH̄+ȳ− − s = βH̄+ȳ− − αs̄−, (2.9)

which yields

∆2 = (βH̄+ȳ− − αs̄−)T (βȳ− − αB̄+s̄−) = β2ȳT
−H̄+ȳ− + α2s̄T

−B̄+s̄− − 2αβb̄− ,

i.e. (2.8). 2

To find a convenient value of parameter β, we can take account of our numerical
experience that the initial scaling parameter b/|y|2 in (1.5) (with b, y without bars)
appears to be suitable also for the new methods. In classical case, choice γ = b/|y|2
for the BFGS update can be motivated by an idea to minimize |(H+ − γI)y|, see [9].
Similarly, minimizing |(H̄+ − γ̄I)y| here, we get γ̄ = yT H̄+y/|y|2. Therefore it can be
advantageous to choose the value β, which satisfies yT H̄+y = b, i.e. γ̄ = b/|y|2.

5



Lemma 2.4. Let H̄ be any symmetric positive definite matrix with H̄ȳ−= s̄− and matrix
H̄+ be given by update (1.11) of H̄. If α= sTȳ−/b̄−, β2 = sTȳ− s̄T

−y/b̄2
− and b̄ > 0 then

yTH̄+y = b.

Proof. From α = sTȳ−/b̄− we get s̄Tȳ− = 0, which implies s̄T y = s̄T ȳ = b̄. Using (2.2)
and H̄ȳ−= s̄−, we obtain H̄+ȳ− = s̄− − (s̄T

−ȳ/b̄)s̄, which yields yT H̄+ȳ− = s̄T
−y − s̄T

−ȳ =
βb̄−. In view of (2.9) and β2b̄− = α s̄T

−y, we obtain

yT H̄+y − b = yT (H̄+ȳ − s) = yT (βH̄+ȳ− − αs̄−) = β2b̄− − α s̄T
−y = 0.

2

3 Results for quadratic functions

In this section we suppose that f is a quadratic function with a symmetric positive
definite matrix G and that β =α, which is a natural choice, if we want to have ȳ =Gs̄.
Here we consider only G-conjugacy of vectors. Since s̄T Gs̄−= s̄Tȳ−= sT ȳ−−αb̄− by (1.7),
the conjugacy of s̄, s̄− can be achieved by the choice α=sTȳ−/b̄−= s̄T

−y/b̄−.
The following theorem shows that for this choice the standard quasi-Newton condition

H̄+y = s is satisfied, value b̄ is minimized and improvement of convergence is the best in
some sense and that b̄ > 0 always holds for linearly independent direction vectors (‖.‖F

denotes the Frobenius matrix norm). Note that the quasi-Newton condition H̄ȳ−= s̄− is
discussed in Section 2.

Theorem 3.1. Let α̂ = sTȳ−/b̄−= s̄T
−y/b̄−, H̄ be any symmetric positive definite matrix

with H̄ȳ− = s̄− and let f be quadratic function f(x) = 1
2
(x−x∗)T G(x−x∗), x∗ ∈ RN , with

a symmetric positive definite matrix G. If vectors s, s̄− are linearly independent, then
b̄ > 0 and choice α = α̂ implies H̄+y = s and minimizes values b̄, ‖G1/2H̄+G1/2− I‖F as
functions of α, where matrix H̄+ is given by update (1.11) of H̄ with β = α.

Proof. Denoting r = G1/2s = G−1/2y, r̄− = G1/2s̄− = G−1/2ȳ−, r̄ = r − αr̄−, R =
G1/2H̄G1/2, R+ = G1/2H̄+G1/2 and E = R− I, we can rewrite update (1.11) in the form

R+ = (1/|r̄|2)r̄r̄T + P̄RP̄ = I + P̄EP̄ , P̄ = I − (1/|r̄|2)r̄r̄T . (3.1)

by |r̄|2 = b̄ and P̄ 2 = P̄ . As a special case, denoting by Ĥ+ matrix H̄+ for α = α̂ and
r̂=r − α̂r̄−, R̂+ = G1/2Ĥ+G1/2, we can rewrite update (1.11) in the form

R̂+ = I + P̂EP̂ , P̂ = I − (1/|r̂|2)r̂r̂T . (3.2)

First we see that value b̄ = |r̄|2 = |r|2 − 2αrTr̄−+ α2|r̄−|2 is minimized by α =
rTr̄−/|r̄−|2 = α̂ and that the minimal value is |r|2 − (rTr̄−)2/|r̄−|2 > 0 by the Schwarz
inequality and linear independency of r, r̄−. Thus we can use Lemma 2.3 with β = α,
which gives H̄+y = s for α = α̂ by s̄T

−ȳ= s̄T
−y− αb̄− = 0.

Further, we have r̂Tr̄−= rTr̄− − α̂|r̄−|2 = 0, which implies r̂Tr̂ = r̂Tr̄. Therefore

P̄ P̂ =
(
I − r̄r̄T

|r̄|2
)
P̂ = P̂ − r̄

|r̄|2
(
r̄T − r̄T r̂

|r̂|2 r̂T
)

= P̂ − (α̂− α)
r̄r̄T
−

|r̄|2 .
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Assumption H̄ȳ− = s̄− can be rewritten in the form Er̄− = 0, which yields P̄ P̂E = P̂E,
thus P̄ P̂EP̂ P̄ = P̂EP̂ . Using this together with (3.1), (3.2) and P̂ 2 = P̂ , we obtain

Tr
[
(R̂+−R+)(R̂+−I)

]
= Tr

[
(P̂EP̂−P̄EP̄ )P̂EP̂

]
= Tr(EP̂EP̂−EP̄ P̂EP̂ P̄ )= 0,

which immediately gives

‖R+ − R̂+‖2
F + ‖R̂+ − I‖2

F = ‖R+ − I‖2
F .

Since R+ = R̂+ holds for α = α̂, value ‖R+ − I‖F is minimized by α = α̂. 2

It is well known (see e.g. [11]) that the L-BFGS method with exact line searches
generates conjugate directions vectors and preserves m̃ (see (1.4)) previous quasi-Newton
conditions. Similar properties also hold for update (1.11) with (the most frequent) unit
stepsizes. If every stepsize is unit, then all direction vectors are conjugate. Moreover,
only one unit stepsize is sufficient to ensure that for some VM matrix up to m̃ previous
quasi-Newton conditions are preserved.

Theorem 3.2. Let x0 ∈ RN , x∗ ∈ RN , k̄ > 0, m ≥ 1, f be quadratic function f(x) =
1
2
(x− x∗)T G(x− x∗) with a symmetric positive definite matrix G, and let for 0 ≤ k ≤ k̄

iterations xk+1 = xk +sk be generated by the method sk = −tkH̄kgk, gk = ∇f(xk), tk > 0,
with matrices H̄k defined in the following way: H̄0 = I and matrices H̄k+1 are given by

H̄k+1 = (sT
kyk/|yk|2) V̄k · · · V̄k−m̃ V̄ T

k−m̃ · · · V̄ T
k

+ (1/b̄k−m̃) V̄k · · · V̄k−m̃+1 s̄k−m̃s̄T
k−m̃ V̄ T

k−m̃+1 · · · V̄ T
k (3.3)

+ · · · + (1/b̄k−1) V̄k s̄k−1s̄
T
k−1 V̄ T

k + (1/b̄k) s̄ks̄
T
k ,

0 ≤ k < k̄, where m̃ = min(k, m−1), yk = gk+1 − gk, and quantities s̄j, ȳj, V̄j and b̄j,
j ≥ 0, are formally defined by s̄0 = s0, ȳ0 = y0, s̄j+1 = sj+1−αj+1s̄j, ȳj+1 = yj+1−αj+1ȳj,
αj+1 = sT

j+1ȳj/b̄j, V̄j = I − (1/b̄j)s̄j ȳ
T
j , b̄j = s̄T

j ȳj. Suppose that every generated vector sk

is linearly independent of s̄k−1, 0 < k ≤ k̄. Then the method is well defined.
Moreover, if tk+1 = 1 for some k, 0 ≤ k < k̄, it holds

(a) H̄k+iȳk = s̄k, (b) s̄T
k Gs̄k+i = 0, (c) s̄T

k gk+i+1 = 0, 1 ≤ i ≤ min(m̃+1, k̄−k). (3.4)

Proof. First, independence of sk, s̄k−1 implies b̄k > 0 by Theorem 3.1 for k = 1, . . . , k̄.
Together with b̄0 = b0 >0 this yields that the method is well defined.

Let tk+1 = 1. For i = 1, (a) follows immediately from (3.3) by V̄ T
k ȳk = 0, (b) from

s̄T
k Gs̄k+1 = s̄T

k+1ȳk = [sk+1 − (sT
k+1ȳk/b̄k)s̄k ]T ȳk = 0 and (c) from s̄T

k gk+2 = s̄T
k yk+1 +

s̄T
k gk+1 = ȳT

k sk+1 + ȳT
k H̄k+1gk+1 = ȳT

k (sk+1 + H̄k+1gk+1) = 0 by (a) and tk+1 = 1.

By induction, let i < min(m̃+1, k̄−k) be fixed and let relations (3.4) with i replaced
by j hold for j =1, . . . , i.

(α) Relation (b) can be written

ȳT
k s̄k+j = 0, 1 ≤ j ≤ i, (3.5)

Since i ≤ m̃, matrix V̄k is always identical with one of the matrices V̄k+i, . . . , V̄k+i−m̃.
Using (3.3) with k = k+i, by V̄ T

k ȳk = 0 and (3.5) together with its consequence V̄ T
k+j ȳk =

ȳk, 1 ≤ j ≤ i, we obtain H̄k+i+1ȳk = s̄k, i.e. (a) also holds for i + 1.
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(β) From (c) and (α) we obtain 0= s̄T
k gk+i+1 = ȳT

kH̄k+i+1gk+i+1 =−(1/tk+i+1) ȳT
ksk+i+1,

therefore ȳT
ks̄k+i+1 = ȳT

ksk+i+1 − αk+i+1 ȳT
ks̄k+i = 0 by (b), i.e. (b) also holds for i + 1.

(γ) Using (c), we get s̄T
k gk+i+2 = s̄T

k yk+i+1 + s̄T
k gk+i+1 = s̄T

k ȳk+i+1 + αk+i+1 s̄T
k ȳk+i = 0

by (β), i.e. (c) also holds for i + 1. 2

4 Application to limited-memory methods

In this section we use results from the previous sections to implement a method based on
the quasi-product form (1.9) of update. We suppose here that α=sTȳ−/b̄−, see Section 2.

From theory in Section 3 we can deduce that we should use the corrected difference
vectors whenever objective function is close to a quadratic function, which is confirmed
by our numerical experiments. As measure of deviation from a quadratic function in
points xk−1, xk, xk+1 can serve e.g. value |sT

k ȳk−1− s̄T
k−1yk| (zero for quadratic functions),

k > 0. We correct, only if it is smaller than b̄2
k−1/bk and if numbers sT

k ȳk−1, s̄T
k−1yk have

the same sign. We tested several choices of the bound and from among them, value
b̄2
k−1/bk led to the most robust method.

Besides, we should not correct, if value b̄k would be too small with respect to bk or
b̄k ≤ 0, i.e. if b̄k ≤ δ1 bk, 0 < δ1 < 1. Since

b̄k = bk − αk s̄T
k−1yk = bk − θk, θk = sT

k ȳk−1s̄
T
k−1yk/b̄k−1, (4.1)

by Theorem 2.1, condition b̄k > δ1 bk can be written as θk < (1−δ1)bk.

Value βk = sgn(αk)
√

θk/b̄k−1, corresponding to the choice in Lemma 2.4, appears to
be suitable if value b̄k is sufficiently great with respect to bk; we use condition b̄k > δ2 bk,
δ1 ≤ δ2 < 1, i.e. θk < (1−δ2)bk by (4.1). Since condition θk < (1−δ1)bk implies θk < bk,

this choice of βk satisfies |βk| <
√

bk/b̄k−1; it is a reason why we use this value βk also in

case that |s̄T
k−1yk/b̄k−1| > 2

√
bk/b̄k−1 to prove global convergence (see Section 5). By our

experience, this alteration has only negligible influence to numerical results.
Global convergence can be easily established (in a similar way as for the L-BFGS

method, see [6]), if |s̄k|/|sk| < ∆ and |ȳk|/|yk| < ∆, k > 0, where ∆ > 1 is a given
constant. If this condition is not satisfied, it suffices to replace the oldest saved vectors
s̄k−m̃, ȳk−m̃ e.g. by sk, yk, see Section 5, where m̃ is defined by (1.4). It is interesting that
the more natural replacement by sk−m̃, yk−m̃ does not give better results (and is more
complicated in practice). Note that in our numerical experiments with N = 1000, value
|ȳk|/|yk| was rarely greater than 10 and value |s̄k|/|sk| greater than 50.

We now state the method in details. Instead of matrices H̄k, m̃+1 couples {s̄j, ȳj}k
j=k−m̃,

k ≥ 0, are stored to compute the direction vector dk+1 = −H̄k+1gk+1, see Section 1. For
simplicity, we omit stopping criteria.

Algorithm 4.1

Data: The number m ≥ 1 of VM updates per iteration, line search parameters ε1, ε2,
0<ε1 <1/2, ε1 <ε2 <1, and correction parameters δ1, δ2, ∆, 0 < δ1≤ δ2 <1<∆.

Step 0: Initiation. Choose starting point x0 ∈ RN , define starting matrix H̄0
0 = I and

direction vector d0 = −g0 and initiate iteration counter k to zero.
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Step 1: Line search. Compute xk+1 = xk+tkdk, where tk satisfies (1.1), gk+1 = ∇f(xk+1),
yk = gk+1 − gk and bk. If k = 0 set s̄k = sk, ȳk = yk and go to Step 4.

Step 2: Correction preparation. Set αk = sT
k ȳk−1/b̄k−1, βk = s̄T

k−1yk/b̄k−1 and θk =
αkβkb̄k−1. If αkβk ≤ 0 or θk ≥ (1−δ1)bk or |αk − βk| ≥ b̄k−1/bk, set αk = βk = 0

and go to Step 3. If θk <(1−δ2)bk or |βk| > 2
√

bk/b̄k−1, set βk = βk

√
αk/βk.

Step 3: Correction. Set s̄k = sk − αks̄k−1, ȳk = yk − βkȳk−1.

Step 4: Update definition. Set m̃ = min(k,m−1), b̄k = s̄T
kȳk and define V̄k = I−(1/b̄k)s̄kȳ

T
k

and H̄k+1
k−m̃ =(bk/|yk|2)I. If |s̄k−m̃|/|sk−m̃|>∆ or |ȳk−m̃|/|yk−m̃|>∆, set s̄k−m̃ = sk,

ȳk−m̃ = yk and b̄k−m̃ = bk. Define H̄k+1≡ H̄k+1
k+1 by (1.9).

Step 5: Direction vector. Compute dk+1 = −H̄k+1gk+1 by the Strang recurrences, using
the definition of matrices {H̄k+1

i }k+1
i=k−m̃, set k := k + 1 and go to Step 1.

5 Global convergence

In this section, we establish global convergence of Algorithm 4.1. In comparison with the
L-BFGS method, boundedness of |s̄k|2/b̄k and |ȳk|2/b̄k cannot be derived from properties
of second-order derivatives of objective function directly here, since vectors s̄k, ȳk, k > 0,
are defined recurrently by (1.7). We will use the following assumption.

Assumption 5.1. The objective function f : RN → R is bounded from below and uni-
formly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤ λ(G(x)) ≤
G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the greatest eigenvalues
of the Hessian matrix G(x)).

Lemma 5.1. Let objective function f satisfy Assumption 5.1. Then G ≤ |y|2/b ≤ G and
b/|s|2 ≥ G.

Proof. Setting GI =
∫ 1

0
G(x + ξs)dξ, q = G

1/2
I s, we obtain y = g+ − g = GIs and, thus,

yTy/sTy = qTGIq/q
Tq =

∫ 1

0

qTG(x + ξs)q/qTq dξ ∈ [ G, G ]

by Assumption 5.1. Similarly, b/|s|2 = sT GIs/s
T s =

∫ 1

0
sT G(x + ξs)s/sTs dξ ≥ G. 2

Theorem 5.1. Let objective function f satisfy Assumption 5.1. Then,Algorithm4.1 gen-
erates a sequence {gk} that either satisfies lim

k→∞
|gk|=0 or terminates with gk=0 for some k.

Proof. All updates in (1.9) are the standard BFGS updates with vectors s̄i, ȳi instead
of si, yi; therefore we have (see [12])

Tr(B̄k+1
i+1 ) = Tr(B̄k+1

i ) + |ȳi|2/b̄i − |B̄k+1
i s̄i|2/c̄k+1

i , (5.1)

det(B̄k+1
i+1 ) = det(B̄k+1

i ) b̄i/c̄
k+1
i , (5.2)

k − m̃ ≤ i ≤ k .

(i) The safeguarding technique in Step 2 of Algorithm 4.1 guarantees αkβk > 0,

b̄k > δ1bk and |βk|≤2
√

bk/b̄k−1, k > 0, see Section 4.
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(ii) We start with the first update in (1.9). Since B̄k+1
k−m̃ = (|yk|2/bk)I, we obtain

Tr(B̄k+1
k−m̃) = (|yk|2/bk) Tr(I) ≤ NG, det(B̄k+1

k−m̃) = (|yk|2/bk)
N ≥ GN (5.3)

by Lemma 5.1. Further, if max(|s̄k−m̃|/|sk−m̃|, |ȳk−m̃|/|yk−m̃|)≤∆, k ≥ 0, in Step 4 then,
in view of b̄k−m̃ > δ1bk−m̃ and Lemma 5.1, from (5.1), (5.2) and (5.3) we get

Tr(B̄k+1
k−m̃+1) ≤ Tr(B̄k+1

k−m̃) + ∆2|yk−m̃|2/(δ1bk−m̃) ≤ (N + ∆2/δ1)G
∆
= C1, (5.4)

det(B̄k+1
k−m̃+1) =

(
det(B̄k+1

k−m̃)bk/|yk|2
)(

b̄k−m̃/|s̄k−m̃|2
) ≥ (

GN/G
)(

Gδ1/∆
2
) ∆
= C2. (5.5)

Otherwise, replacing s̄k−m̃, ȳk−m̃, b̄k−m̃ by sk, yk, bk in Step 4, we similarly obtain

Tr(B̄k+1
k−m̃+1) ≤ Tr(B̄k+1

k−m̃) + |yk|2/bk ≤ (N + 1)G ≤ C1, (5.6)

det(B̄k+1
k−m̃+1) =

(
det(B̄k+1

k−m̃)bk/|yk|2
) (

bk/|sk|2
) ≥ GN+1/G ≥ C2. (5.7)

(iii) We will show that
Tr(B̄k+1

i ) ≤ C3, k − m̃ ≤ i ≤ k + 1, k > 0, (5.8)

where C3 is a constant. If we replace C3 by C1, it is true for i = k − m̃ + 1 by (5.4) or
(5.6) and for i = k − m̃ by (5.3) together with NG < C1. Thus (5.8) holds for m̃ = 0
with any C3 ≥ C1.

Let m̃ > 0. Since updates in (1.9) satisfy the quasi-Newton conditions

H̄k+1
i ȳi−1 = s̄i−1, k − m̃ < i ≤ k, k > 0, (5.9)

we can write |ȳi−1|2/b̄i−1 = ȳT
i−1ȳi−1/ȳ

T
i−1H̄

k+1
i ȳi−1 ≤ Tr(B̄k+1

i ), which by (5.1), (1.7), (i)
and Lemma 5.1 implies

Tr(B̄k+1
i+1 )−Tr(B̄k+1

i ) ≤ |yi−βiȳi−1|2
b̄i

≤ 2

δ1

( |yi|2
bi

+β2
i

|ȳi−1|2
bi

)
≤ 2G

δ1

+
8

δ1

Tr(B̄k+1
i ),

k − m̃ < i ≤ k. Denoting C0 = 1 + 8/δ1 and using (5.4) or (5.6), we obtain

Tr(B̄k+1
i+1 ) ≤ (1 + C0 + . . . + Cm̃−1

0 )2G/δ1 + Cm̃
0 C1

∆
= C3, k − m̃ < i ≤ k,

which together with C3 > C1 by C0 > 1 concludes the proof of (5.8). For i = k + 1 in
(5.8) we have

Tr(B̄k+1) = Tr(B̄k+1
k+1) ≤ C3, k > 0. (5.10)

(iv) Using (5.9) and αi = sT
i ȳi−1/b̄i−1, we get

c̄k+1
i =(si−αis̄i−1)

TB̄k+1
i (si−αis̄i−1) = sT

i B̄k+1
i si −(sT

i ȳi−1)
2/b̄i−1 ≤ sT

i B̄k+1
i si,

k − m̃ ≤ i ≤ k , k > 0, which together with (5.2) yields

det(B̄k+1
i+1 )/ det(B̄k+1

i ) = b̄i/c̄
k+1
i ≥ δ1(bi/|si|2)(sT

i si/s
T
i B̄k+1

i si) ≥ δ1G/C3,

k − m̃ ≤ i ≤ k , by Lemma 5.1 and (5.8). From this and (5.5) or (5.7) we conclude

det(B̄k+1) = det(B̄k+1
m̃+1) ≥ C2(δ1G/C3)

m̃ ∆
= C4, k > 0. (5.11)

(v) The lowest eigenvalue λ(B̄k) of matrix B̄k satisfies λ(B̄k) ≥ det(B̄k)/Tr(B̄k)
N−1,

k ≥ 0. Setting qk = B̄
1/2
k sk, from (5.10) and (5.11) we get

(sT
k B̄ksk)

2

|sk|2|B̄ksk|2
=

sT
k B̄ksk

sT
k sk

qT
k qk

qT
k B̄kqk

≥ det(B̄k)

Tr(B̄k)N−1

1

Tr(B̄k)
≥ C4

CN
3

, k > 1,

which implies lim
k→∞

|gk|= 0, see [12], Theorem 3.2 and relations (3.17)-(3.18). 2
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6 Numerical results

In this section, we demonstrate the influence of vectors corrections on the number of
evaluations and computational time, using the following collections of test problems:

[8] - Test 11 without problems 42, 48, 50, i.e. 55 problems, which are modified problems
from CUTE collection [2]; used N are given in Table 1, where problems, modified
in some way, are marked with ’*’,

[1] - termed Test 12 here, 73 problems, N = 5000,

[7] - Test 25 without problems 48, 57, 58, 60, 61, 67-70, 79, i.e. 72 problems, N = 1000.

The source texts and reports can be downloaded from camo.ici.ro/neculai/ansoft.htm

(Test 12) and from www.cs.cas.cz/~luksan/test.html (Test 11 and Test 25).

Problem N Problem N Problem N Problem N
ARWHEAD 5000 DIXMAANI 3000 EXTROSNB 1000 NONDIA 5000
BDQRTIC 5000 DIXMAANJ 3000 FLETCBV3* 1000 NONDQUAR 5000
BROYDN7D 2000 DIXMAANK 3000 FLETCBV2 1000 PENALTY3 1000
BRYBND 5000 DIXMAANL 3000 FLETCHCR 1000 POWELLSG 5000
CHAINWOO 1000 DIXMAANM 3000 FMINSRF2 5625 SCHMVETT 5000
COSINE 5000 DIXMAANN 3000 FREUROTH 5000 SINQUAD 5000
CRAGGLVY 5000 DIXMAANO 3000 GENHUMPS 1000 SPARSINE 1000
CURLY10 1000 DIXMAANP 3000 GENROSE 1000 SPARSQUR 1000
CURLY20 1000 DQRTIC 5000 INDEF* 1000 SPMSRTLS 4999
CURLY30 1000 EDENSCH 5000 LIARWHD 5000 SROSENBR 5000
DIXMAANE 3000 EG2 1000 MOREBV* 5000 TOINTGSS 5000
DIXMAANF 3000 ENGVAL1 5000 NCB20* 1010 TQUARTIC* 5000
DIXMAANG 3000 CHNROSNB* 1000 NCB20B* 1000 WOODS 4000
DIXMAANH 3000 ERRINROS* 1000 NONCVXU2 1000

Table 1. Dimensions for Test 11 – modified CUTE collection.

For comparison, Table 2 contains results for the following limited-memory methods:
L-BFGS – the Nocedal method based on the Strang formula, see [11], method from [14]
that use the preceding vectors (Algorithm4.5) and new Algorithm4.1. We have used
m = 5, δ1 = 0.000 001, δ2 = 0.01, ∆ = 100 and the final precision ‖g(x?)‖∞ ≤ 10−6.

Test 11 Test 12 Test 25
Method NFE Time NFE Time NFE Time
L-BFGS 80539 32.50 43648 46.17 126733 37.65

Alg. 4.5 in [14] 80328 34.52 43182 56.67 126289 38.35
Algorithm 4.1 64395 30.20 34472 37.57 114910 39.39

Table 2. Comparison of the selected methods.

For a better demonstration of both the efficiency and the reliability, we compare
selected optimization methods by using performance profiles introduced in [3]. The per-
formance profile πM(τ) is defined by the formula

πM(τ) =
number of problems where log2(τP,M) ≤ τ

total number of problems
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with τ ≥ 0, where τP,M is the performance ratio of the number of function evaluations
(or the time) required to solve problem P by method M to the lowest number of function
evaluations (or the time) required to solve problem P . The ratio τP,M is set to infinity
(or some large number) if method M fails to solve problem P .

The value of πM(τ) at τ = 0 gives the percentage of test problems for which the
method M is the best and the value for τ large enough is the percentage of test problems
that method M can solve. The relative efficiency and reliability of each method can be
directly seen from the performance profiles: the higher is the particular curve the better
is the corresponding method. The following figures, based on results in Table 2, reveal
the performance profiles for tested methods graphically.
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Figure 1 (Test 11, m = 5, 55 problems)
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Figure 2 (Test 12, m = 5, 73 problems)
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Figure 3 (Test 25, m = 5, 72 problems)
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