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2020
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Abstract:

We formulate conditions on A and b under which the double absolute value equation jxj�jAxj = b

possesses in each orthant a unique solution which, moreover, belongs to the interior of that or-

thant. 2
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0.1 Notation

In this report we consider an equation of the form

jxj � jAxj = b (1)

(with A 2 R
n�n, b 2 R

n) which we call a double absolute value equation. The absolute
value of a vector as well as vector inequalities �, > are understood entrywise. For each
y 2 f�1; 1gn (i.e., a �1-vector in Rn) we denote by Ty the diagonal matrix with diagonal
vector y. Then

R
n
y = fx j Tyx � 0 g

is the orthant prescribed by the sign vector y, and

(Rn
y )

0 = fx j Tyx > 0 g

is its interior. The equation (1) is said to be orthantwise solvable if in each orthant of Rn it
possesses a unique solution which, moreover, belongs to the interior of that orthant. Hence
an orthantwise solvable equation (1) possesses exactly 2n solutions. A square interval matrix
is called regular if all matrices contained therein are nonsingular, and it is said to be singular
otherwise. I denotes the n� n identity matrix.

0.2 The result

The following theorem shows a particular property of the double absolute value equation.

Theorem 1. Let A be nonsingular and let the interval matrix

[A�1 � I; A�1 + I] (2)

be regular. Then for each b > 0 the equation (1) is orthantwise solvable.

Proof. Take a y 2 f�1; 1gn and consider the absolute value equation

A�1x0 � Tyjx
0j = Tyb: (3)

Because the interval matrix [A�1 � jTyj; A
�1 + jTyj] = [A�1 � I; A�1 + I] is regular by

assumption, by [3, Thm. 1] the equation (3) possesses a unique solution x0. Put

xy = A�1x0; (4)

then (3) can be rewritten as
xy � TyjAxyj = Tyb

and
Tyxy � jAxyj = b;

where
Tyxy = jAxyj+ b � b > 0;

hence
Tyxy = jxyj
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so that xy solves (1), belongs to (Rn
y )

0 and by [3, Thm. 1] it is a unique such a solution. As
y 2 f�1; 1gn was arbitrary, the property holds for each orthant of Rn. 2

Thus, under (2) regular and b > 0, to compute the unique solution xy of (1) in (Rn
y )

0,
we must �rst solve the absolute value equation (3) and then rearrange its solution by (4).
Performing this process for each y 2 f�1; 1gn, we can �nd all solutions of (1).
Solving the absolute value equation (3) may be performed using MATLAB �le absvale-

qn.m freely downloadable from http://uivtx.cs.cas.cz/�rohn/other/absvaleqn.m.
As regards regularity of (2), for moderate values of n (say, n � 20), it may be checked

using a necessary and su�cient condition [6, Thm. 1, (iv)]: (2) is regular if and only if the
numbers

det(A�1 � Ty); y 2 f�1; 1gn

are either all negative, or all positive. For larger values of n, one may try a su�cient
regularity condition [5, Thm. 4]: if A is nonsingular and

minf%(jAj); %(jAAT j) < 1

holds, then the interval matrix (2) is regular. Here % stands for the spectral radius of a
matrix.

0.3 Example

Consider a double absolute value equation with randomly generated data

A =

-0.1825 0.0111 0.4944

-0.1642 -0.4793 0.3795

-0.2134 0.4314 -0.3814

b =

0.1757

0.2089

0.9052

X =

1.0000 1.0000 1.0000 0.7487 0.4239 1.4260

-1.0000 1.0000 1.0000 -0.7777 0.4636 0.9201

-1.0000 -1.0000 1.0000 -2.0065 -3.2464 3.0352

1.0000 -1.0000 1.0000 1.7962 -2.7524 4.0028

1.0000 -1.0000 -1.0000 0.7777 -0.4636 -0.9201

-1.0000 -1.0000 -1.0000 -0.7487 -0.4239 -1.4260

-1.0000 1.0000 -1.0000 -1.7962 2.7524 -4.0028

1.0000 1.0000 -1.0000 2.0065 3.2464 -3.0352
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Each row of the output matrix X is of the form (yTxTy ) where xy is the unique solution of
(1) in (Rn

y )
0. Observe that indeed Tyxy > 0 for each y 2 f�1; 1gn and that x�y = �xy for

each such a y as it can be easily proved from (3), (4).

The example was solved using the following MATLAB code.

function [X]=dblabsvaleqn(A,b)

% Orthantwise solvability of the double absolute value equation

% abs(x)-abs(A*x)=b.

X=[];

if ~(b>0), error('vector not positive'), end

n=size(A,1); I=eye(n);

if rank(A)<n, error('singular matrix'), end

B=inv(A);

S=regising(B,I);

% download: http://uivtx.cs.cas.cz/~rohn/other/regising.m

if ~isempty(S), error('interval matrix not regular'), end

z=zeros(1,n); y=ones(1,n);

x=absvaleqn(B,-diag(y),diag(y)*b);

% download: http://uivtx.cs.cas.cz/~rohn/other/absvaleqn.m

x=B*x; X=[y x'];

while any(z~=ones(1,n))

k=find(z==0,1);

z(1:(k-1))=zeros(1,k-1);

z(k)=1; y(k)=-y(k);

x=absvaleqn(B,-diag(y),diag(y)*b);

x=B*x; X=[X; [y x']];

end

0.4 Related results

Theorem 1 asserts [unique] solvability in the interior of each orthant. There are some results
related to this property. We have the following theorem of the alternatives.

Theorem 2. For each nonsingular A exactly one of the following two alternatives holds:

(i) the inequality

jAxj � jxj

has a solution x 6= 0,

(ii) the inequality

jAxj < jxj

has a solution in the interior of each orthant.
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Proof. The proof proceeds by showing using [2, Lemma 2.1] and [4, Thm. 3.2, (v)] (with
obvious details omitted here) that the alternative (i) is equivalent to singularity of the interval
matrix (2), and (ii) is equivalent to its regularity. Hence at least one of the two alternatives
always holds and they exclude each other, which completes the proof. 2

The result can also be formulated in a normwise form.

Theorem 3. For each nonsingular A exactly one of the following two alternatives holds:

(i) the inequality
kAxk1 � kxk1

has a solution x 6= 0,

(ii) the inequality
kAxk1 < min

i
jxij

has a solution in the interior of each orthant.

Proof. The proof runs in parallel to the previous one, with the interval matrix (2) being
replaced by [A�1 � E; A�1 + E], E being the matrix of all ones. 2
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