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http://www.nusl.cz/ntk/nusl-512291
http://www.nusl.cz
http://www.nusl.cz


Institute of Computer Science
The Czech Academy of Sciences

Scalar-valued score functions and
their use in parametric estimation
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1 Introduction

Probability theory of continuous random variables is deemed to be a relatively
closed discipline with low probability of occurrence of new ideas of basic
significance. However, the theory exhibits some curious facts.

By R is denoted real line. The term random variable means in this text a
univariate continuous random variable with a finite or infinite open interval
support X = (a, b) ⊆ R (“on X”), fully described by a couple (X , F ),
where F (x) = P(X < x) is the distribution function, the representative of a
probability measure P on X .

Random variable X distributed according to F with density f(x) is used
to be characterized by moments EXk =

∫
X x

kf(x) dx, especially by the mean
EX as a measure of its central tendency and variance V arX = E(X−EX)2

as a measure of its variability. Both first two moments are useful for descrip-
tion of distributions “near normal” and for studies of properties of asymptot-
ically normal estimates of parameters of parametric distributions from large
data samples, but not for a description of distributions themselves. They
may not exist in cases of heavy-tailed distributions with densities going to
zero too slowly. A well-known example is the symmetric Cauchy distribu-
tion with clearly expressed center, the mean of which does not exist. Fig. 1
shows two histograms of 250 items generated from the beta-prime distribu-
tion BP (1, 2) (see Section 6) with infinite variance and generated values less
than 15. Variability of the distribution should certainly be described by a
more suitable measure.

All of the probability densities have integral over the sample space equal to
one. What is the reason for which distributions are distinguished as “regular”
and those with non-existing basic characteristics ?

The moments testify on an unsuccessful historical transition from discrete
to continuous random variables, leading to introduction of the Euclidean ge-
ometry in the sample space apart from a large variety of probability measures
on it.

2 Parametric approach

To get reliable information from observed data, mathematical statistics does
not rely on sample values of moments and uses parametric approach.

The simplest parametric model is a location familyG(x−µ) onR. Given a
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random sample Xn = (x1, ..., xn), a realization of random variables X1, ..., Xn

iid according to some Gµ0 ∈ Gµ, one obtains the best estimate of µ0 from
equation

1

n

n∑
i=1

U(xi − µ̂n) = 0, (1)

where

U(x− µ) =
∂

∂µ
log g(x− µ) (2)

is the generic likelihood score for µ, describing relative influence of an item
xi on the value of the estimate. To speak in terms of robust statistics, (2) is
the best inference function for location distributions.

The situation is more complicated if θ = (θ1, ..., θm) is a vector parameter.
Hundred years ago, R. A. Fisher (1922) generalized (2) by introducing vector-
valued score functions U(y;θ) = (U1, ..., Um) with components

Uj(x;θ) =
∂

∂θj
log f(x;θ),

now known as Fisher scores. It led to the maximum likelihood (ML) esti-
mating equations

1

n

n∑
i=1

Uj(xi;θ) = 0, j = 1, ...,m, (3)

providing estimates with minimal asymptotic variance and hence considered
as the best parametric estimates.

However, best only for data without outliers. Fisher scores are often un-
bounded. To suppress influence of outliers, Huber (1964) generalized equa-
tion (1) into

1

n

n∑
i=1

ψ(xi − µ̂n) = 0, (4)

where ψ(x) is a bounded inference function. Asymptotic variance of µ̂n from
(4) is

σ2
ψ =

Eψ2

n[Eψ′]2
. (5)

Nowadays, a large number of bounded, scalar-valued, easily manipulated
inference functions is known, more or less useful for practical estimation,
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but often without a tight relation to the assumed model. To “robustify”
equations (3) (by trimming or Huberizing unbounded Fisher scores) is too
complicated even in cases of two-parameter distributions.

Recently, Fabián (2001) recognized a new, yet undetected way how to
generalize function (2) and equation (1) for distributions with vector param-
eter. The aim of the present paper is to explain basic steps of the approach,
to present main theoretical results, and to outline possibilities of its use in
solution of statistical tasks.

The plan of the paper is the following. The score function of standard
distributions on the entire R, our starting point, is described in Section
3. The concept is generalized via specific transformations for distributions
on arbitrary open interval support in Section 4. Here are also discussed new
characteristics of distributions based on score random variables. The Central
Limit Theorem for score random variables is proven in Section 5. General-
izations for parametric families and score moment estimates of parameters,
outlined in Section 6 are followed by some examples (Section 7) and by a
short discussion about possible use of scalar-valued score functions in other
statistical tasks.

3 Score function of distributions on R
Let Y be random variable with distribution G on R and continuously differ-
entiable density g(y). Our starting point is the identity

∂

∂µ
log g(y − µ) = − 1

g(y − µ)

d

dy
g(y − µ) ≡ SG(y − µ). (6)

The generic log-likelihood score for location at µ = 0 equals to the score
function of a standard distribution G with score function

SG(y) = −g
′(y)

g(y)
, (7)

evidently characterizing the distribution itself.
Often, Fisher vector-valued function U or Fisher scores and even ψ-

functions in robust statistics are sometimes called score functions. We use
the term in the narrow sense of the word: score function of G on R is the
function (7).
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To any Y can be assigned a score random variable SG(Y ) having inter-
esting properties:

i/ According to behavior of SG(y) when y is approaching to ±∞, distri-
butions of Y on R can be classified into 6 substantially different types:

UE Unbounded Exponentially increasing
UP Unbounded Polynomially increasing
BU Bounded at −∞ and Unbounded at ∞
UB Unbounded at −∞ and Bounded at ∞
BB Bounded at ±∞
BR Bounded Redescending

Basic types of score functions of standard distributions onR and correspond-
ing densities are given in Table 1.

ii/ Under mild regularity conditions, moments

ESkG = ESkG(Y ) =

∫ ∞
−∞

SkG(y)g(y) dy (8)

are finite (Fabián, 2001), since the densities of light-tailed distributions are
quickly decreasing to zero and score functions of heavy-tailed distributions
are bounded.

iii/ Considering unimodal distributions only (the multimodal are usually
taken as mixtures of unimodal ones), as a typical value of Y can be considered
the modus y∗ given by

SG(y∗) = 0. (9)

iv/ It follows from (6) that ES2
G equals the Fisher information for location.

ES2
G of standard distributions (without parameters) may be taken as Fisher

information for y∗ or even of distribution G itself, cf. Cover and Thomas
(2006). Moreover, in agreement with the sense of the Fisher information in
classical statistics, as a measure of variability of G can be chosen V arSY =
1/ES2

G.
v/ Function

wG(y) = S ′G(y) =
dSG(y)

dy
, (10)

can be interpreted as the weight function of G, describing relative weight of
an item y ∈ X with respect to the mode y∗.

Table 1 shows the simplest strictly increasing smooth function of each
from 6 types, chosen as score functions, corresponding densities and distri-
butions from (7) and their weight functions. They can be considered as basic
types of standard distributions on R.
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Surprisingly, score random variables in the narrow sense are not discussed
in probability or statistical textbooks. The reason is undoubtedly the fact,
that score functions (7) have peculiar behavior in cases of distributions with
a partial support X 6= R. For example, the “score function” (7) of the
exponential distribution equals one and that of uniform distribution equals
zero.

4 Score functions of distributions on X 6= R
This serious obstacle for using score functions has been surmounted and the
relevant score functions of distributions with partial support has been found
by Fabián (2001). The procedure was based on the idea that continuous
random variables on X 6= R are transformed random variables from R.

Let random variable Y on the entire R has standard distribution G with
density g(y). Due to a simple account, g(y) is supposed unimodal and twice
continuously differentiable. Let us call G a prototype of a transformed dis-
tribution F (x) = G(η(x)) on X , where η : X → R be a strictly increas-
ing smooth mapping. A distribution F of the transformed random variable
X = η−1(Y ) has on X density

f(x) = g(η(x))η′(x), (11)

where η′(x) = dη(x)/dx is the Jacobian of the transformation.
Aa a transformation-based scalar-valued score SF (x) of F (“core func-

tion” in Fabián, 2001, “t-score” in his recent works) were identified the trans-
formed score function (7) of prototype G,

SF (x) = SG(η(x)). (12)

By the use of (7) and (11) one obtains formula

SF (x) = − 1

f(x)

d

dx

[
1

η′(x)
f(x)

]
, (13)

eliminating the explicit dependence on G. Indeed,

SG(x) = − 1

g(η(x))η′(x)

d

dx
g(η(x)) = −g

′(η(x))

g(η(x)
= SG(η(x))
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SF (x) in (13) still depends on the mapping used. Various possible map-
pings η : R → R are clearly apparent from concrete formulas (11). It holds
true even for many transformed distributions on X 6= R. For example, a
distribution on X = (π/2, π/2) and density

f(x) =
1√

2π cos2 x
e−

1
2
tan2 x

has clearly normal prototype and η(x) = tanx. If neither g nor η′(x) are
“visible” from (11), it is to use simple mappings by Johnson (1949), the part
of the most of distributions in current use,

η(x) =

{
log(x− a) when X = (a,∞)

log x− a
(b− x)

when X = (a, b). (14)

Consider the exponential distribution with density f(x) = e−x. Since
e−x = xe−x 1

x
, obviously η(x) = log x and SF (x) = x − 1. By (13) and (14),

the score function of the uniform distribution on (0, 1) is SF (x) = 2x− 1. A
detailed discussion of this point can be found in Fabián (2016).

Other characteristics of transformed distributions are derived from those
of their prototypes.

Definition 1 Let F be a distribution on X with density f(x). Func-
tion SF (x) given by (13) is called the score function of distribution with a
shorthand sfd. Any x∗ such that SF (x∗) = 0 is called the score mean.

The score mean of transformed F with unimodal prototype G is a unique
quantity. By (12) and (9), 0 = SF (x∗) = SG(η(x∗)) and x∗ = η−1(y∗) is the
transformed mode of the prototype, which we take as the typical value of F ,
Fabián (2021).

By (12) and (11), score moments are

ESkF =

∫
X
SkG(η(x)g(η(x) dx = ES2

G,

particularly ESF = 0.

Definition 2 The score variance of F is defined by

ω2
F ≡ V arSX =

ES2
F

[S ′F (x∗)]2
, (15)
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where S ′F (x∗) = dSF (x)/dx|x=x∗ . Reasons for introduction of this measure
of variability of distributions are explained in Fabián (2022).

Transformed weight function of F is, obviously, wF (x) = wG(η(x))η′(x),
Fabián (2021).

By means of newly introduced functions can be expressed the distance
generated in the sample space by probability measure represented by F as

dF (x1, x2) = |δF (x1, x2)| (16)

where

δF (x1, x2) =
SF (x2)− SF (x1)

S ′F (x∗)
=

1

wF (x∗)

∫ x2

x1

wF (x)f(x) dx. (17)

Table 2 shows densities, t-scores and weight functions of transformed
prototypes from Table 1 by using η(x) = log x, which is a basic set of standard
distributions on R+. Transformed distribution is of the same type as its
prototype, but its right tail is heavier. We omitted in Table 2 the log-
Cauchy distribution since the Cauchy one is considered to be an extreme
case of heavy-tailed behavior.

5 Central limit theorem for score random vari-

ables

A generalization of the central limit theorem for score random variables has
been given by Fabián (2021).

Theorem 1 Let X1, ..., Xn be random variables on X iid according to F
with scalar-valued score SF . Random variables SF (X1), ..., SF (Xn) are iid as
well. Set

S̄F =
1

n

n∑
i=1

SF (Xi).

For n→∞ √
nS̄F

D−→ N (0, ES2
F ). (18)

Proof. Since ESF = 0 and ES2
F is finite, the assertion follows directly

from the Lindeberg-Lévy central limit theorem. 2

Given random sample Xn = (x1, ..., xn) according to F , Theorem 1 can
be used for simultaneous estimation of the score mean and score variance.
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Theorem 2 Let F be a standard distribution with strictly increasing dif-
ferentiable scalar-valued score SF (x) and score mean x∗. Set

x̄S =
1

n

n∑
i=1

SF (xi) and x̂∗n = S−1F (x̄S)

If n→∞, √
n(x̂∗n − x∗)

D−→ N (0, ω2
F ).

Proof. As S ′F (x∗) 6= 0 and for n→∞ SF (x̂∗n)
D−→ N (SF (x∗), ES2

F/n),

S−1F (SF (x̂∗n))
D−→ N (x∗, [S ′F (x∗)]−2ES2

F/n)

according to the delta method (cf. Serfling, 1980, pp. 118). By (15),
ES2

F/[S
′
F (x∗)]2 = ω2

F . 2

Sample score means of some standard distributions are given in Table 3.

By Theorem 2, the variance of the sample score mean multiplied by n
is the estimate of the score variance of distribution F . This phenomenon,
known as “happy coincidence” in the case of the normal distribution, occurs
in terms score mean and score variance in any case of standard distribu-
tions. (This finding is, of course, of no practical use, but indicates a natural
direction in which parametric estimation can move on).

6 Scalar-valued scores of distributions with

vector parameter

Returning back to identity (6), that is to

∂

∂µ
log g(y − µ) = SG(y − µ),

Fabián (2001) suggested to generalize score function (7) for vector θ by using
formula (13) and η(x) discussed in Section 3 as follows:

Definition 3 Let F (x;θ) be a continuous parametric distribution on ar-
bitrary open interval X ⊆ R and density f(x;θ). Its scalar-valued score
function (sfd: score function of distribution) is

SF (x;θ) = − 1

f(x;θ)

d

dx

[
1

η′(x)
f(x;θ)

]
. (19)
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Unlike the classical Fisher approach, one obtains, due to differentiation
with respect to the variable, a parametric scalar-valued score function and
characteristics described in the last section as functions of parameters.

The score mean and score variance of distributions with linear scalar-
valued scores (normal, beta, gamma) is the mean and variance. Characte-
ristics of three distributions on R+ discussed later we present in Table 3.

From the point of view of the score mean, there are two classes of distri-
butions: with structural parameter, that is with location µ or transformed
location τ = η−1(µ) (those on R+ are called by Marshall and Olkin (2007)
the log-location distributions), and without such a parameter. Score mean
x∗ of distributions from the first class is the structural parameter and their
estimates are ML estimates (Fabián, 2016, Theorem 1).

Example 4.1 Prototypes of the mutually reciprocal light-tailed Weibull
and heavy-tailed Fréchet have a location and scale structure transformed to
R+ by

y − µ
σ
→ log x− log τ

σ
=
(x
τ

)c
, τ, c ∈ R+

so that transformed location τ is the structural and 1/c the scale parameter.
Variance of the Fréchet one does not exist if c ≤ 2. The left panel of Fig.
2 shows three at a first glance similar Fréchet densities with very different
variances. The score variances of plotted densities are 0.17, 0.21 and 0.25,
respectively. In the right panel are compared courses of V arX = σ2 and
V arSX = ω2

F with respect to increasing c, that is, to decreasing scale. Score
variance is finite inside the parameter space.

Example 4.2. Heavy-tailed beta-prime BP (p, q) (Johnson et al., 1995)
is an example of a distribution without a structural parameter. The mean
and variance of EX = p/(q − 1) and V arX = p(p+ q − 1)/[(q − 1)2(q − 2)]
do not exist if q < 1 and q < 2, respectively. Some densities and sfds of
BP (p, p) are plotted in Fig. 3. Note that histograms on Fig. 1 correspond
to the first one.

7 Estimates and distance in the sample space

Although the inference function (19) is scalar-valued, the true value of vector
θ can be estimated by the use of the score moment method. By Fabián
(2001, 2010, 2016) and Stehĺık et al. (2010), given a random sample Xn from
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Fθ, θinΘm, the score moment estimate θ̂n of “true” θ0 is the solution of the
system of equations

1

n

n∑
i=1

SkF (Xi;θ) = ESkF (θ), k = 1, ...,m. (20)

Score moment (SM) estimates are the M -estimates so that they are con-
sistent and asymptotically normal under well-known conditions, cf. Huber
and Ronchetti (2009). SM estimates are sensitive to outliers on the light tail
side and not sensitive on the heavy tail side of the considered family. Since
in equations (20) occur powers of a unique function, in cases of heavy-tailed
distributions are SM estimates robust for all components of the paramet-
ric vector. Scalar-valued scores of light-tailed distributions can be relatively
easily “robustified”.

Having an estimate θ̂n, sample Xn is characterized by the sample score
mean x̂∗n = x∗(θ̂n) as a typical value of the data and the square root of the
sample score variance, (ω̂F )n = ωF (θ̂n) as a characteristic radius (strength)
of the data, both acquiring finite values.

Particularly, a typical value x̂∗n of a sample Xn taken from distribution
F (x;x∗) with explicitly expressed score mean, estimated from the first score
moment equation

1

n

n∑
i=1

SF (xi; x̂
∗) = 0, (21)

is identical with the sample score mean estimated by means of the generalized
CLT (18).

The sample score mean of distributions with linear scalar-valued scores
(normal, beta, gamma) is the mean.

Example 6.1. Average estimates of the score mean x̂∗n, its standard
deviations (std), and estimates of the score variance ω2

F from 20000 samples
of lengths n = 500 and n = 50, respectively, generated from (heavy-tailed)
BP (1, 0.5) and BP (1, 1), are presented in Table 5. By ML are denoted the
maximum likelihood and by SM the score moment estimates. STD estimates
are based on Theorem 2: x̂∗n determined from the first SM equation

n∑
i=1

xi − x∗

xi + 1
= 0 (22)
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and ω̂2
F = n[std(x̂∗n)]2. The values of the score mean are practically the

same, standard deviations of ML estimates (computed, however, using two
ML equations for p and q) are slightly lower.

Under contamination results became different Fig. 4 shows SM and ML
estimates of the score mean of samples from the contaminated BPcont =
0.9BP (1, 4)+0.1BP (p, 2) for increasing contamination expressed by increas-
ing p, that is, with increasing score mean of contaminating distribution. The
SM method is naturally better if strong contamination takes a part even in
cases of the data from heavy-tailed distributions.

The distance in the sample space of a parametric distribution is obtained
by generalizing the distance (16).

Example 6.2. Distances dF (x, 5) in the sample space of Weibull and
Fréchet distributions for some values of parameter c are plotted in Fig. 5.
Distances on the heavy-tail side are bounded.

The most interesting distance in the sample space is certainly that one
between the hypothetical value x∗ and its estimate x̂∗n from (21).

Theorem 3 Random variable

δF (x̂∗n, x
∗) =

∑n
i=1 SF (xi;x

∗)

nS ′F (x∗)

is AN(0, ω2
F/n).

Proof. By (16)

δF (x̂∗n, x
∗) =

SF (x̂∗n)− SF (x∗)

S ′F (x∗)
.

By Theorem 2 x̂∗n − x∗ is AN(0, ω2
F/n), by Theorem A, Sefling (1980, pp.

118) δF (x̂∗n, x
∗) is AN(0, ω2

F/n) as well. As SF (x∗) = n−1
∑n

i=1 SF (xi, x
∗) and

SF (x̂∗n) = 0, the assertion holds true.

For distributions with a structural parameter the distance (16) is identical
with that considered in the Rao scores tests and used for construction of Rao
confidence intervals, cf. Lehman (2001, pp. 529). For distributions without
a structural parameter it is a generalized Rao distance with respect to the
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score mean. The Rao two-sided confidence interval for the sample score mean
is thus determined from

dF (x̂∗n, x
∗) ≤

uα/2√
n
ωF (23)

where uα/2 is the upper α/2 point of the standard normal distribution.

Example 7.2. Given a sample Xn according to BP (p, q) and x̂∗n deter-
mined from (22),

δF (x̂∗n, x
∗) =

1

1 + x∗
1

n

n∑
i=1

xi − x∗

xi + 1
.

The two-sided generalized Rao confidence interval or x̂∗ follows from (23)
and Table 4.

8 Other possible applications

Besides the point estimates, the simplicity of score-valued score functions
(sfds) predestines them for solution of various statistical problems in situ-
ations at which adequate models of continuous distributions are far from
normal.

The first widely accepted application is the robust t-Hill estimator of the
extremal value index of heavy-tailed distributions. The original procedure
by Hill (1975) was considered by Stehĺık and Fabián (2008) as an algorithm,
modified by using sfds of Pareto distribution instead of likelihood scores. The
score mean of the distribution, the harmonic mean, has direct relation to this
index. Properties of the t-Hill estimator were further studied by Stehĺık et al.
(2012), Beran and Shell (2012), Jordanova et al. (2013, 2016). Stehĺık et al.
(2020) suggested t-lgHill estimator using sfd of the log-gamma distribution.

Preliminary studies of a use of scalar-valued scores in other statistical
tasks concerns the linear regression with positive data, Stehĺık et al. (2019),
estimation of the score correlation coefficient of samples from heavy-tailed
distributions, Fabián (2010c) and the estimation of the power spectra of
positive time series with outliers, Fabián (2010b). While in robust statistics
are studied data influenced by outliers, our studies were oriented to data from
heavy-tailed distributions where outlying data are regular values generated
from the distribution. Results are showing that a use of a proper sfds in
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estimation procedures can be beneficial in situations with underlying skewed
heavy-tailed distributions with great kurtosis.

9 Conclusions

In the paper we have described a new tool for study of continuous random
variables. The suggested approach consists in dealing, instead with random
variables X, with their treated forms, the scalar-valued score random vari-
ables (sfds), expressing relative influence of items from the distribution of X
with respect to the typical value. Moments of score random variables are
finite even in cases of heavy-tailed distribution, which enables to establish fi-
nite measures of central tendency and variability of continuous distributions.
The approach provides a unified point of view on distributions both with and
without structural parameter and on both the light-tailed and heavy-tailed
ones. Another important result is establishing a one-to-one relation between
the probability measure and the corresponding metric in the sample space.

As the scalar-valued scores are constructed by means of differentiation
with respect to the variable, procedures developed for characteristics of stan-
dard distributions are immediately extendable to parametric distributions.
While scalar-valued, the sfds can be used for estimation of parameters by
a generalized moment method. In contrast with maximum likelihood esti-
mates, the score moment estimates are direct consequences of the theory for
standard distributions.

The concepts described here belongs within the range of classical statis-
tics, but by choosing heavy-tailed parametric models one obtains robust re-
sults. For light-tailed models are robust considerations necessary, but per-
haps feasible since inference functions are scalar-valued.

At the end we noted that knowing (assuming) a suitable parametric model
underlying the data, the sufficiently general but simple scalar-valued score
functions could be used in solutions of other statistical problems.
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Table 1: Score functions and densities of the basic set of standard distribu-
tions on R. K0 is the Bessel function of the third kind.

SG(y) type g(y) distribution wG(y)
ey−e−y

2
UE 1

2K0(1)
e− cosh y hyperbolic ey+e−y

2

y UP 1√
2π
e−

1
2
y2 normal 1

ey − 1 BU eye−e
y

Gumbel ey

1− e−y UB e−ye−e
−y

extreme value e−y
ey−1
ey+1

BB ey

(1+ey)2
logistic 2ey

(ey+1)2

2y
1+y2

BR 1
π(1+y2)

Cauchy 2(1−y2)
(1+y2)2

Table 2: Densities, t-scores and weight functions of the basic set of distribu-
tions with support R+. GIG means the Generalized Inverse Gaussian.

type distribution f(x) TF (x) wF (x)

UE GIG 1
2K0(1)x

e−
1
2
(x+1/x) 1

2
(x− 1/x) 1

2
1/x2

UP lognormal 1√
2πx

e−
1
2
log2x log x 1/x

BU exponential e−x x− 1 1
UB Fréchet 1

x2
e−1/x 1− 1/x 1/x2

BB loglogistic 1
(x+1)2

x−1
x+1

2
(x+1)2

Figure 1: Histograms of random samples generated from beta-prime distri-
bution with infinite variance
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Table 3: The sample score mean of some standard distributions. x̄G means
the geometric mean, x̄H harmonic mean and GIG means generalized inverse
Gaussian.

X F f(x) SF (x) x̂∗F
(0, 1) uniform 1 2x− 1 x̄

R normal 1√
2π
e−

1
2
x2 x x̄

R+ lognormal 1√
2π
e−

1
2
log2 x log x x̄G

R+ exponential e−x x− 1 x̄
R+ inv. exponential 1

x2
e−1/x 1− 1/x x̄H

R+ GIG 1
K0(1)x

e−
1
2
(x+1/x) 1

2
(x− 1/x) (x̄x̄H)1/2

Table 4: Densities, score functions, typical values and score means of some
distributions on R+.

F f(x) SF (x) x∗ ω2
F

Weibull c
x
(x/τ)ce−(x/τ)

c c
τ
[(x/τ)c − 1] τ τ 2/c2

Fréchet c
x
(τ/x)ce−(τ/x)

c c
τ
[1− (τ/x)c] τ τ 2/c2

beta-prime 1
B(p,q)

xp−1

(x+1)p+q
q
p
qx−p
x+1

p
q

p(p+q)2

q3(p+q+1)

Table 5: Estimates of the score mean and score variance of two beta-prime
distributions.

BP x∗ = 2 n = 500 ω2
F = 7.2 x∗ = 2 n = 50 ω2

F = 4/3
(1.0.5) x̂∗ std ω̂2

F x̂∗ std ω̂2
F

ML 2.0064 0.113 7.268 ML 2.0508 0.380 7.788
SM 2.0064 0.119 7.283 SM 2.0495 0.402 7.930
CLT 7.383 CLT 7.924

BP x∗ = 1 n = 500 ω2
F = 7.2 x∗ = 1 n = 50 ω2

F = 4/3
(1, 1) x̂∗ std ω̂2

F x̂∗ std ω̂2
F

ML 1.0013 0.050 1.338 ML 1.0122 0.162 1.377
SM 1.0014 0.052 1.340 SM 1.0131 0.168 1.396
CLT 1.343 CLT 1.386

18



Figure 2: Similar Fréchet densities with very different variances and depen-
dence of varX and V arSX on increasing c

Figure 3: Densities and t-scores of BP (2p, p) distribution

Figure 4: Estimates of the score mean and its mean square error in a con-
taminated BP (1, 4) model
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Figure 5: Distances dF (x, 5) in sample spaces of Weibull and Fréchet distri-
butions
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