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Sparse Restricted Perception Equilibrium

Volha Audzei and Sergey Slobodyan ∗

Abstract

In this paper we study model selection under bounded rationality and the impact of monetary
policy on the equilibrium choice of forecasting models. We use the concept of sparse rationality
(developed recently by Gabaix, 2014), where paying attention to all possible variables is costly
and agents can choose to over- or under-emphasize particular variables, even fully excluding some
of them. Our main question is whether an initially mis-specified equilibrium (the restricted percep-
tions equilibrium, or RPE) is compatible with the equilibrium choice of sparse weights describing
the allocation of attention to different variables by the agents inhabiting this RPE. In a simple
New Keynesian model, we find that the agents stick to their initial mis-specified AR(1) forecast-
ing model choice when monetary policy is less aggressive or inflation is more persistent. We also
identify a region in the parameter space where the agents find it advantageous to pay attention to
no variable at all.

Abstrakt

V této práci zkoumáme výběr modelu v rámci omezené racionality a dopad měnové politiky na
rovnovážnou volbu prognostických modelů. Používáme koncept řídké racionality (který v ne-
dávné době vypracoval Gabaix, 2014), v němž je nákladné věnovat pozornost všem možným
proměnným a ekonomické subjekty mohou svojí volbou nadhodnocovat či podhodnocovat kon-
krétní proměnné, nebo dokonce některé z nich zcela vynechat. Hlavní otázkou je, zda zprvu chybně
specifikovaná rovnováha (Restricted Perceptions Equilibrium, RPE) je v souladu s rovnovážnou
volbou řídkých vah, které popisují přiřazení pozornosti různým proměnným subjekty v rámci RPE.
V jednoduchém novokeynesiánském modelu docházíme k závěru, že subjekty se drží svého prvot-
ního chybně specifikovaného prognostického modelu AR(1), je-li měnová politika méně agresivní
nebo se inflace stane perzistentnější. V parametrickém prostoru rovněž nacházíme oblast, kde sub-
jekty považují za výhodné nevěnovat pozornost žádné proměnné.
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Nontechnical Summary

There is a growing literature showing that economic agents form their expectations in a way that is
often inconsistent with the rational expectations hypothesis. Agents’ expectations, in turn, influence
the efficiency of monetary policy and may even call for a discussion of different policy choices
(e.g. Gabaix 2016, García-Schmidt and Woodford 2015, and Hommes et al. 2017).

In this paper we contribute to the literature by studying how monetary policy itself influences the
way agents form their expectations. We consider a stylized model where adaptively learning agents
are restricted to the use of only a subset of the observables. This subset is chosen such that it
results in the smallest forecast errors. We then allow our agents to reconsider their initial choice of
forecasting rules subject to information constraints as in Gabaix (2014). We then study under which
conditions agents stick to the initially mis-specified forecasting rule, move to another mis-specified
rule, or switch a rule consistent with rational expectations.

Within a textbook New Keynesian model framework, we show that one of the crucial parameters
governing the agents’ choice is the reaction of monetary policy to inflation expectations in the Taylor
rule. The stronger is the reaction of monetary policy to the deviation of inflation expectations from
the target, the larger is the parameter space where a rational expectations-consistent rule is selected.
We consider two basic policy rules, one with forward-looking inflation expectations and the other
with contemporaneous inflation expectations. The predictions under the two rules are similar, except
that the rule with contemporaneous expectations results in lower volatility, and less tightening is
needed for the agents to move to the rational expectations equilibrium.

We also find that as inflation becomes more persistent, the mis-specified AR(1) rule for inflation
forecasting survives in a larger parameter region. The same prediction holds for a smaller corre-
lation between inflation and output. These results are supported by some studies on professional
forecasters’ behavior. An example is Lopez-Perez (2017), where forecasters are found to have paid
more attention to inflation and less to the output gap in the recent years of high inflation persistence
and low correlation between inflation and the output gap.



Sparse Restricted Perception Equilibrium 3

1. Introduction

It has been understood for a long time that the hypothesis of rational expectations (RE), while
delivering a theoretically elegant, model-consistent, and typically unique solution for agents’ ex-
pectations, imposes cognitive and computational demands on them that might be incompatible with
reality. As a result, deviations from RE have been studied in a growing stream of theoretical and
empirical literature, including the bounded rationality (Marcet and Sargent 1989), adaptive learning
(Evans and Honkapohja 2001), sticky information (Mankiw and Reis 2007), rational inattention
(Sims 2003), and sparse rationality (Gabaix 2014) approaches.

The question of model selection under model uncertainty has been on econometricians’ minds for
decades. Recently, with increasing computer power and the development of machine learning appli-
cations, interest in this question has been revived. Computer routines have been developed to select
models with greater explanatory power or to compute weights to combine a vast number of mod-
els. Because including more variables always improves the model fit to the data but increases the
variance of the estimators, it is important to control for “overfitting”, that is, to select the minimum
set of variables necessary to produce the efficient estimator. One tool for reducing the number of
regressors while penalizing for overfitting is the Lasso estimator, originally developed by Tibshirani
(1996). In the context of macroeconomics, the studies that use the Lasso estimator for regression
shrinkage include Zou and Hastie (2005) and Gefang (2014). This idea of sparsity in selecting the
important variables has been adopted by Gabaix (2014) within his concept of sparse rationality,
where instead of regression coefficients agents estimate the attention weights. The penalty term in
the Lasso objective function then gets a straightforward interpretation as the attention cost. In this
paper, we use the sparce rationality concept to study the persistence of and switching between the
mis-specified forecasting rules. We address rule selection in a small theoretical model, though the
insights can be extended to larger models when our individual variables are interpreted as groups of
potential regressors.

Our paper is related to the literature on adaptive learning (AL) and bounded rationality. In the
adaptive-learning approach to modeling deviations from the rational expectations (RE), agents are
assumed to possess little prior knowledge of the underlying structure of the economy, and to grad-
ually learn the coefficients in their forecasting rules using econometric methods. A survey of this
approach to learning in macroeconomics can be found in Evans and Honkapohja (2009). Several
papers have shown that adaptive agents can persist in using forecasting rules that are mis-specified
relative to RE ones. Molnar (2007) models a class of agents who learn what the best forecasting rule
is given the past data. Even if their forecasting rules are mis-specified, such learners can survive
competition with RE agents. In Evans et al. (2012), convergence to a mis-specified equilibrium hap-
pens when the expectations feedback is strong. Adam (2005) considers an economy where agents
are restricted to processing only a certain number of variables in the regression and thus to using
underparametrized forecasting rules. As the agents’ expectations affect the data-generating process
of the model and induce a restricted perceptions equilibrium (RPE), the restricted rule can outper-
form the rational expectations rule in equilibrium. Similarly to Evans et al. (2012), this happens
when there is large enough feedback from expectations to the outcome variable.

Another way to justify agents’ use of mis-specified forecasting rules is to assume that they have
limited information-processing capacity, as is done in the rational inattention literature — see Sims
(2003), Mackowiak and Wiederholt (2009), and Matejka and McKay (2015). In this literature,
attention allocation is based on the concept of enthropy. Sparce rationality of Gabaix (2014) is a
different, less computationally demanding, approach to the attention allocation problem, with agents
assigning attention weights to variables based on their relative informational content.
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Our paper contributes to the literature by making connections between two related but distinct con-
cepts, namely, adaptive learning and sparse rationality. In a simple New Keynesian model of mone-
tary policy, the adaptively learning agents choose a strict subset of variables from the RE equilibrium
set for their forecasting functions, thus inducing a restricted perceptions equilibrium (RPE). We then
allow agents inhabiting this RPE to reconsider their forecast rules, imposing the informational cost
constraint modeled as in Gabaix (2014). We ask whether the stability of the RPE is sufficient to
ensure that the same subset of variables is selected by informationally constrained agents. In other
words, we are interested in whether the initial mis-specification becomes self-perpetuating in the
case of informational constraints. We find that one of the key parameters favoring the survival of
a mis-specified rule is the strength of the expectational feedback, which is a function of mone-
tary policy aggressiveness. We show that more aggressive monetary policy increases the region in
the parameter space where the agents move to the RE equilibrium. We consider two policy rules,
one with forward-looking inflation expectations and the other with contemporaneous inflation ex-
pectations. Under the policy rule with contemporaneous inflation expectations, the region in the
parameter space where a mis-specified rule survives in equilibrium is smaller.

There are now a number of papers that show how bounded rationality influences monetary and fis-
cal policy transmission. Among them are Gabaix (2016) and García-Schmidt and Woodford (2015).
Some of their findings call for reconsideration of the Taylor principle and explain the forward guid-
ance puzzle. As agents do not see far into the future in Gabaix (2016), current policy has a limited
effect on their future decisions. Likewise, the announcement of future policies has an attenuated
effect on agents’ contemporaneous decisions. We, however, are interested in how monetary pol-
icy influences expectation formation, rather than in how expectation formation influences monetary
policy.

Another strand of research on bounded rationality we relate to is experimental research on the
interaction of monetary policy and agents’ expectations. Examples include Pfajfar and Žakelj (2018)
and Assenza et al. (2013), who find that monetary policy aggressiveness influences the choice of
forecasting rule. Studies by Hommes (2014) and Heemeijer et al. (2009) support the importance
of the expectational feedback parameter for the survival of mis-specified rules. In our paper, the
expectational feedback parameter is the inverse of monetary policy aggressiveness, and we study
how it influences the agents’ modeling choice.

The paper is organized as follows. In the second section we study an economy where agents learn
about a simple exogenous process. We derive analytical results and provide economic intuition for
them. In the third section we move to a simple New Keynesian model and study the interaction of
monetary policy and agents’ forecasting rules. The last section concludes.

2. Simple Model

In this section we demonstrate the main intuition behind our results in a simple model. Later in the
paper, we generalize our findings to a three-equation New Keynesian model and discuss the possible
policy implications. We start our analysis with a simple process:

yt = α +βEtyt+1 + γ1w1
t + γ2w2

t +ηt , (1)

where w1
t and w2

t are persistent observable shocks such that[
w1

t
w2

t

]
=

[
ρ1 0
0 ρ2

] [
w1

t−1
w2

t−1

]
+

[
ε1

t
ε2

t

]
.
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The
(
w1

t ,w
2
t
)

shocks are normally distributed around zero with variance-covariance matrix

Σw =

[
σ2

1 ρσ1σ2
ρσ1σ2 σ2

2

]
,

with ρ ∈ [−1,1] being the correlation coefficient between the shocks, defined as ρ =
Cov(w1

t ,w
2
t )

σ1σ2
. ηt

is an iid, normally distributed shock around zero mean with variance ση . Without loss of generality,
γ1 and γ2 could be taken to be positive.

To address the model selection question using a shrinkage estimator with a fixed penalty term, it is
necessary to standardize the variables, that is, to subtract their mean and divide by their standard
deviation. Note that when the variables are standardized, the coefficients are adjusted appropriately.
To save on notation, in what follows we refer to variables in their standardized form unless stated
otherwise: yt =

yt−ȳ
σy

= yt
σy

, wi
t =

wi
t−w̄i

σi
=

wi
t

σi
, Cov(w1

t ,w
2
t ) =

Cov(w1
t ,w

2
t )

σ1σ2
=

ρσ1σ2
σ1σ2

= ρ . The variances
of the standardized variables are equal to one. As for the coefficients, their transformed values are
given by β = β σy

σy
= β , γi = γi

σi
σy

.

The RE minimum state variable (MSV) solution of this model is given by

yt = a+g1w1
t +g2w2

t +ηt , (2)

with MSV coefficients:

g1 =
γ1

1−βρ1
, (3)

g2 =
γ2

1−βρ2
. (4)

We restrict the agents to using only one variable in their forecasting models, as in Adam (2005,
2007) framework.1 In our model, their forecasting rule could use either w1

t or w2
t :

yt = a1 +b1w1
t +ηt , (5)

yt = a2 +b2w2
t +ηt . (6)

Without loss of generality, we assume that our agents use (5) as their perceived law of motion
(PLM), which, when the agents use this PLM to form expectations about yt+1, induces the restricted
perceptions equilibrium that we call RPE1. Substituting the forecast formed using (5) into (1), we
obtain the actual law of motion (ALM):

yt = α +βa1 + b̄1w1
t + b̄2w2

t +ηt , (7)

with

b̄1 = βρ1b1 + γ1, (8)
b̄2 = γ2. (9)

1 Such a restriction is motivated by empirical and experimental evidence — see Branch and Evans (2006), Adam
(2007), Hommes (2014), and Pfajfar and Žakelj (2014), who show that very simple AR(1) rules might be used by
agents to forecast inflation in survey and experimental settings. Several papers that estimate DSGE models with
adaptive expectations, for example, Slobodyan and Wouters (2012) and Ormeno and Molnar (2015), show that
assuming agents use very simple forecasting rules leads to superior model fit.
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We model our agents as econometricians who do not have prior knowledge about the underlying
structure of the economy. However, they do the best they can using the past data. In order for this
learning process to converge, three conditions must hold. First, for the agents’ PLM (5) to be the
equilibrium solution, coefficient b1 must be equal to the OLS regression coefficient:

b1 =
Cov(yt ,w1

t )

Var
(
w1

t
) . (10)

Second, the equilibrium (5) must be expectationally stable (E-stable). Finally, the forecast errors
produced by their rule of choice, (5), must be smaller than those of the alternative, (6). We compare
forecast errors using mean squared forecast errors (MSFE).

Proposition 2.0.1. In RPE1 (RPE2), where the agents use equation 5 (6) as the forecasting rule,
the equilibrium coefficient b1(b2) is given by

b1 =
γ1 + γ2 ρ
1−βρ1

,

b2 = (βρ1b1 + γ1) ρ + γ2.

Both RPE1 and RPE2 are E-stable. The MSFE for an agent inhabiting RPE1 and using (5) as the
forecasting rule, MSFE1, is smaller than the MSFE of an agent using (6), MSFE2, and thus RPE1
is an equilibrium if:

b2
1 > b2

2. (11)

Proof. Appendix A.

Note that in the case of non-standardized variables, condition (11) will be re-written as b̃2
1σ2

1 > b̃2
2σ2

2 ,
where b̃1,2 are related to b1,2 in the standardized case as b̃i = bi

σy
σi

.

We next allow the agents to challenge their equilibrium forecasting rules and possibly reconsider
them. We conduct our analysis for the case where RPE1 is an equilibrium. That is, the agents have
initially chosen to use w1 in their forecasting rule and have found out ex post that it produces smaller
forecast errors than the rule with w2, i.e., (11) holds. Note that in our simple model, both forecasting
rules are under-specified. Thus, the analysis for the case where the agents have initially started with
RPE2 will be symmetric.

Our agents know that there are other variables in RPE1 (7), and w2
t is observable. They also know

that using w2
t alone for forecasting is inferior to using only w1

t , because (11) is true. However,
they may wonder whether adding w2

t to their forecasting rule is beneficial. The forecasting rule
that includes both w1

t and w2
t would be clearly superior in this model if the agents were allowed to

learn its coefficients, coinciding with b̄1 and b̄2.2 The agents, however, are subject to attention cost,
modeled as in Gabaix (2014). They could attach weights to a variable according to its importance.
The importance of a variable depends on its contribution to the variance of the variable of interest
(y in our case) and to the agents’ utility. The weights then determine how much attention is paid to

2 If all the agents start using both shocks in their forecasting rule, using least-squares learning from then onward,
then their PLM coefficients will converge to those of MSV solution (3), (4), as was shown in Evans and Honkapohja
(1994). However, we are asking whether an atomistic agent could find it advantageous to use both shocks for
forecasting.
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a variable given the exogenous cost of attention and the loss stemming from inattention, which is a
reduction in the quality of the forecast. We let the agents choose the attention vector by maximizing
the precision of their forecast of yt as in (7):

u =−1
2
(ŷt − yt)

2 . (12)

For rational agents capable of paying attention to both w1 and w2, the optimal forecast is equal
to ŷt =

̂̄b1w1
t +
̂̄b2w2

t , where ̂̄b1 and ̂̄b2 are OLS estimates of the coefficients in (7). That is, fully
informed agents with RE use both shocks in the forecasting rule. Sparse rational agents face a trade-
off between the attention cost and the increase in forecast precision. They optimize by allocating
attention between the variables and forming their optimal forecast rule as ŷt = m1 · ̂̄b1w1

t +m2 · ̂̄b2w2
t ,

where m1, m2 ∈ [0,1] are attention weights, and ̂̄b1, ̂̄b2 are OLS estimates of the coefficients in the
selected forecasting rule. As in Gabaix (2014), we let the agents use the Lasso estimator to derive
the optimal attention vector m = (m1,m2)

′
, where the attention cost becomes the Lasso penalty term:

m = arg min
m∈[0,1]2

1
2 ∑

i, j=1...2
(1−mi)Λi j

(
1−m j

)
+κ ∑

i, j=1...2
|mi|. (13)

The loss arising from inattention, given inattention vector 1−m, is given by the quadratic form
(1−m)

′
Λ(1−m) , with [Λ]i j = −σi jawiuaaaw j . This loss reflects how much of the variation in the

process we lose when (partially) neglecting variables. σi j is equal to Σw
i j, awi =−u−1

aa uawi determines
by how much a change in a variable wi changes the agent’s action a, equal to the forecast ŷt . Finally,
the parameter κ governs the attention cost. The derivatives of the agents’ utility (12) are given by

uaa =
∂ 2ua

∂a2 =
∂
∂a

(
−(a− b̄1w1

t − b̄2w2
t

)
) =−1,

uawi = b̄i.

Then awi = b̄i, and the cost of inattention is therefore given by a quadratic form Λ, with [Λ]i j =

σi jb̄ib̄ j.

In the interior solution, taking the derivatives of (13) with respect to m1 and m2 gives the following
expressions (details and corner solutions are presented in Appendix A.3):

m1 = 1− κ
b̄1b̄2

(
1−ρ2

) b̄2 −ρ b̄1
b̄1

, (14)

m2 = 1− κ
b̄1b̄2

(
1−ρ2

) b̄1 −ρ b̄2
b̄2

. (15)

One can immediately observe that both weights are falling with attention cost, κ . If the attention
cost is large enough, agents choose not to pay attention to any variable, and use only a constant term
in their forecasts. Both weights are decreasing in the ALM coefficient on another variable: e.g., the
weight on the first shock is lower if b̄2 is larger.

Proposition 2.0.2. The condition for m1 > m2 coincides with the condition for MSFE1 < MSFE2:

b̄2
1 > b̄2

2,

which is equivalent to condition (11).
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Proof. Appendix A.4

Proposition 2.0.2 states that as long as using the RPE1-consistent PLM (5) produces smaller forecast
errors than using PLM (6), sparsely rational agents optimally pay more attention to w1

t than to w2
t .

If the weight on shock w2
t is positive, and all agents continue learning, as described in the footnote

(2), eventually the system will converge to the RE MSV solution. Therefore, in order for the agents
to stick to the mis-specified rule (5), m2, the weight on shock w2

t , must be zero.

Proposition 2.0.3. The second shock gets a non-zero weight in the agents’ forecast when:

κ ≤
(
1−ρ2) b̄2

2

1−ρ b̄2
b̄1

. (16)

Proof. Re-arranging (15), we get

κ
b̄1b̄2

(
1−ρ2

) b̄1 −ρ b̄2
b̄2

≤ 1 ⇒ κ ≤
(
1−ρ2) b̄2

2

1−ρ b̄2
b̄1

.

Appendix A.3 shows that if a solution with the nonzero weight m2 exists, it outperforms all corner
solutions with m2 = 0. Therefore, (16) is sufficient for the solution with nonzero m2 (and thus m1)
to exist.

Proposition 2.0.3 also states that if the RPE1-consistent rule is an equilibrium, that is, if (11) is sat-
isfied, there is no region in the parameter space such that RPE1 survives for any κ , as for sufficiently
small κ (16) guarantees m2 ≥ 0.

We can interpret condition (16) as follows. Consider the ALM (7). It includes two normally dis-
tributed variables, w̃1

t = b̄1w1
t and w̃2

t = b̄2w2
t . The correlation coefficient between w̃1

t and w̃2
t is

equal to ρ . Then ρ b̄2
b̄1

represents the coefficient in a regression of w̃2
t on w̃1

t , while
(
1−ρ2) b̄2

2 is the

variance of the conditional distribution of w̃2
t given w̃1

t . Thus, if the cost of attention, κ, corrected
for the information about w̃2

t already contained in (5), is larger than the variance of the omitted
information — the variance of w̃2

t conditional on w̃1
t , then the agents find it beneficial not to include

the second shock in their forecasts. Condition (16), then, has an intuitive economic interpretation
as equalizing the cost and benefits of considering that portion of the information contained in the
second shock w2

t which is above and beyond that which is already evaluated, given that w1
t is taken

into account in the forecast.

For a more intuitive representation, we now introduce a measure which is affected not by the
absolute values of the shock variances and persistences, but only by their ratio. For this pur-
pose, we normalize the attention cost in (16) by b̄2

2 = γ2. We define the cost-to-variance ratio as

f ≡ κ̄
b̄2

2
=

1−ρ2

1−ρ b̄2/b̄1
, where κ̄ is the threshold for the second shock to be included in the agents’ rule.

For κ < κ̄ , the agents use both shocks in their forecasting rules, and for κ ≥ κ̄ the agents stick to
the rule with w1 only. We plot this ratio f for different values of individual shocks persistencies,
ρi, expressing it in terms of original, non-standardized, parameters independent of ρi’s, that is, as
a function of non-standardized γ and of standard deviations to i.i.d. innovations to the shocks: σεi .
Figure 1 presents the plot of f in the coordinates (ρ, log(ΓΣ)) , where ΓΣ ≡ γ1σε1

γ2σe2
is the relative
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importance of the innovation to the first shock, ε1
t , in the true data-generating process (1). We do

this for different values of ρ1 and ρ2. The agents include w2
t in the forecasting rule when the nor-

malized attention cost is smaller than f . Thus, larger f (lighter shade) means that the range of costs
consistent with w2

t used for forecasting is wider.

In Figure 1, the white area corresponds to the parameter values where PLM (5) is not selected,
as it produces forecast error larger than PLM (6). The hatched area defines the region where a
particular combination of persistence of shocks and the correlation between them is impossible.3A
larger persistence of w2

t , ρ2, reduces the parameter space where MSFE1 < MSFE2, while increasing
ρ1 expands this area.

A large absolute value of correlation between the shocks, |ρ|, also contributes to better forecast-
ing performance of the RPE1-consistent PLM (A1), so that MSFE1 < MSFE2. As described in
Appendix A.2, the MSFE1 < MSFE2 condition is satisfied for |ρ| > 1−βρ1−Γ

βρ1
. When the MSFE

criterion (11) is satisfied, a large absolute correlation increases the variation in yt explained by the
first shock alone, making the right-hand side of (16) smaller.

Notice that a positive correlation, ρ , leads to a positive m2 for larger κ
b̄2

2σ2
ε2

than a negative correlation

with the same absolute value. The asymmetric effect of the correlation between w1 and w2 is
explained in Figure 2, where we plot the inattention cost, the first term on the RHS in equation (13),
as an ellipse, and the corresponding attention cost, the second term on the RHS in equation (13),
as a line, for different values of correlation, ρ . As shown in Appendix A.5, the slope of the major
axis of the ellipse depends on the sign of ρ directly and through the term b̄1. As ρ increases, the
ellipse rotates and generally expands, but the attention cost is not affected; thus the ellipse and the
isocost line touch in different places depending on the sign of the correlation. As is obvious from
the figure, for positive ρ optimality is achieved at higher (m1, m2), because the inattention cost is
generally higher in the north-east quadrant of Figure 2 for higher ρ .

Finally, note that even when log(ΓΣ) > 0 (and ΓΣ > 1), so that w1
t plays a more important role in

explaining the variation in (1) than w2
t , and both ρ1 and ρ are large, so that taking into account

w1
t is very informative (see the upper right panel of Figure 1), there could still be an attention

cost low enough for w2
t to be included in sparsely rational agents’ PLM. Therefore, informationally

unconstrained agents with κ = 0 will always find it beneficial to include w2
t in their forecasting rules.

In the next section we move to a three-equation New Keynesian model and study possible policy
implications.

3 The correlation between w2
t and w1

t can be expressed as ρ = Cov(w1,w2)
σ1σ2

= ρε12

√
(1−ρ2

1 )(1−ρ2
2 )

1−ρ1ρ2
, where |ρε12 |< 1 is

the correlation between the innovations to the shocks. This implies that |ρ|< |
√

(1−ρ2
1 )(1−ρ2

2 )

1−ρ2
1 ρ2

|.
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Figure 1: Threshold for the Cost-to-Variance Ratio
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Figure 2: Inattention Cost as a Function of Correlation, ρ .
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3. Three-Equation New Keynesian Model

Having studied the choice of forecasting rules when all the variables are exogenous, in this section
we move to a New Keynesian model with endogenous variables. We employ the textbook three-
equation New Keynesian model (cf., Galí 2015, section 3), but modify it to include external habit
formation. We first show that the conditions derived in the previous section can be generalized to
this model, and then discuss the policy implications.

As shown in Appendix B, the equations of the model linearized around the deterministic steady
state, where we have assumed an extreme case of habit persistence, take the form:

yt = yt−1 −
1
σ
(it −Etπt+1)+gt , (17)

πt = βEtπt+1 +ωyt +ut , (18)

where πt is inflation and yt the output gap, gt and ut are Gaussian shocks with finite variance, and
σ and ω , and β are standard coefficients calibrated as in Galí 2015, section 3. We assume that the
households do not observe the realization of current shocks and treat them as zero mean random
variables: Et(gt) = Et(ut) = 0.

The monetary authority sets interest rates in reaction to households’ inflation expectations, which
may deviate from rational expectations. We consider two alternative forms of the monetary policy
rules, with the monetary authority reacting to the deviation of expectations of the future or the
current inflation from the steady state:

it = ϕπEtπt+1, (19)
it = ϕπEtπt . (20)

The rational expectations equilibria and their properties under different policy rules are formalized
in proposition 3.0.1.

Proposition 3.0.1. Under the forward-looking policy rule, (19), the model becomes:

yt =
1−ϕπ

σ
Etπt+1 + yt−1 +gt , (21)

πt = (β +ω
1−ϕπ

σ
)Etπt+1 +ωyt−1 +ωgt +ut . (22)

REE solutions to (21) and (22) of the form π̂t = bπt−1+cyt−1+dgt +zut , with the coefficients defined
in (B23)–(B26), are not determinate. The minimum state variable solution (MSV) of the form

π̂t = cyt−1 +dgt + zut , (23)

with the coefficients defined in (B39)–(B42), is both E-stable and determinate, as long as ϕπ > 1.

Under the rule with contemporaneous inflation expectations, (20), the solution to the model is:

yt = −ϕπ
σ

Etπt +
1
σ

Etπt+1 + yt−1 +gt , (24)

πt = (β +
ω
σ
)Etπt+1 −

ωϕπ
σ

Etπt +ωyt−1 +ωgt +ut . (25)



12 Volha Audzei and Sergey Slobodyan

REE solutions to (25) and (24) of the form π̂t = bπt−1 + cyt−1 + dgt + zut , with the coefficients
defined in (B69)–(B72), are not determinate. The minimum state variable solution (MSV) of the form
π̂t = cyt−1+dgt +zut , with the coefficients defined in (B79)–(B81) is both E-stable and determinate,
as long as ϕπ > 1 and ϕπ < 2σ

c +1.

Proof. The proof is given in Appendix B.2.

As in the simple model of section 2, we also standardize the variables. As the steady state values of
π and y are zero, we simply divide them by their standard deviations. The coefficients in the Phillips
curve (18) are multiplied by σx

σπ
, where σx is the standard deviation of variable x. In the IS equation

(17), all the coefficients are multiplied by σx
σy

. The covariance between the standardized variables

is obtained as Cov(y,π) = Cov(y,π)
σyσπ

. To economize on notation, we continue using symbols π and y
while referring to these variables in their standardized form, unless stated otherwise.

As in the previous section and in Adam (2005), we restrict our agents to using only one (endoge-
nous) variable in their forecasting rules (as the shocks ut and gt are unobservable, they cannot be
used). Accordingly, we consider two RPEs in which agents use either lagged inflation or the lagged
output gap in their forecasting rules. In the first RPE, the agents use as their PLM

π̂t = απ +βπ π̃t−1, (26)

while in the other one the rule is

π̂t = αy
π + cy

π ỹt−1. (27)

We call these PLMs Mπ and My, respectively. We also call the resulting RPEs Mπ and My. In the
context of our model, the rule My includes the ‘correct’ endogenous variable y, which belongs to
the MSV solution (23), while Mπ does not, as π is not present in (23). However, if the agents stick
to Mπ , the lag of inflation affects the actual law of motion through the expectational terms, and the
actual law of motion is given by (B87). For this rule to be an equilibrium choice, it should result in
smaller forecast errors than the alternative one, My.

Proposition 3.0.2. For the model described by (17) and (18), and the policy rule as in (19) or (20),
the condition for Mπ to be an equilibrium, MSFEπ < MSFEy, is:

b̄2
π > c̄2

π , (28)

where b̄π and c̄π are the Mπ ALM coefficients on the standardized lag of inflation and the output
gap, respectively, given by equations (B87) and (B88).

Proof. The proof is given in Appendix B.3.

Rewriting (28), we can see that Mπ results in smaller mean forecast squared errors than My if

Γ̄2 > 1, (29)

where Γ̄ = b̄π
c̄π

. Thus, if in the ALM consistent with Mπ RPE, (B87), the share of the inflation
variation explained by inflation term is larger than the share accounted for by the output, then Mπ
results in smaller forecast errors than My .
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The criterion for Mπ to be an equilibrium, (28), is similar to the condition (11) from the simple
model: the variable used by the agents in their PLM should be more important than the one that is
omitted, for the RPE consistent with this PLM to be an equilibrium.

3.1 Attention Weights

Suppose that the actual law of motion, induced by the Mπ rule, is given in (B87)–(B88). The agents
now can reconsider their forecasting rules, subject to the attention cost constraint. Will they give
a significant weight to the past output? In other words, will they include the correct ‘variable’ y
or stick to the rule with the ‘wrong’ one, π?4 Will the agents choose not paying attention to any
of the variables? To answer these questions, we let the agents select the sparse weights, a vector
m =

(
mπ ,my

)′
, by minimizing (π̂t −πt)

2 subject to the attention cost. The difference from the
simple case in Section 2 is that the variables used for forecasting are now endogenous. We rewrite
the utility function as:

u =−1
2
(myc̄πyt−1 +mπ b̄ππt−1 −bππt−1 − cπyt−1)

2. (30)

To find the sparse weights, the agents minimize (13), where the quadratic form for the cost of
inattention is given by Λi j =−σi jawiuaaaw j . The corresponding derivatives are given below:

uaa =
∂ 2ua

∂a2 =
∂
∂a

(
−(a− b̄ππt−1 − c̄πyt−1

)
) =−1,

uaπt−1 = b̄π ,

uayt−1 = c̄π ,

aπt−1 = −uaauaπt−1 =−b̄π ,

ayt−1 = −uaauayt−1 =−c̄π .

Then the cost of inattention is given by (1−m)
′
Λ(1−m) with Λ =

(
b̄2

π σπyb̄π c̄π
σπyb̄π c̄π c̄2

π

)
, where

σπy is the covariance of the standardized output gap and inflation, derived in Appendix B.3.

Taking the first-order conditions of (13) and solving for weights results in the following expressions:

my = 1− κ
c̄2

π
(
1−R2

) b̄π − c̄πR
b̄π

, (31)

mπ = 1− κ
b̄2

π
(
1−R2

) c̄π − b̄πR
c̄π

, (32)

where R is the correlation between yt and πt in RPEπ , the equilibrium consistent with agents using
the Mπ rule.

Proposition 3.0.3. The condition for mπ > my coincides with the condition for MSFEπ < MSFEy:

b̄2
π > c̄2

π .

Proof. The proof is given in Appendix C.
4 Again, if the agents start to include lagged output in their forecasting rules and employ least-squares learning
from then onward, they eventually learn the coefficient on past π and y, with the former being zero.
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The next proposition summarizes the condition for output to get a positive weight in agents’ forecast.

Proposition 3.0.4. The lag of output gets a positive weight in agents’ forecast when:

κ ≤
(
1−R2) c̄2

π
1−R c̄π

b̄π

. (33)

Proof. The proof is given in Appendix C.

Notice the similarity of (33) with (16).

Propositions 3.0.2–3.0.4 have established that the conditions guaranteeing the existence of Mπ RPE,
the relative importance of the weights on inflation and the output gap, and the condition of a non-
zero weight on the output gap all look very similar to the simple model case of Section 2. However,
in the New Keynesian model monetary policy can affect the joint dynamics of πt and yt , which
generates additional insights.

3.2 Policy Rules and Forecasting Rules

Next we consider the interaction between monetary policy and the equilibrium selection of fore-
casting rules. For all numerical simulations we use the textbook calibration with β = 0.99, the
risk aversion coefficient σ = 1, the Frisch elasticity of labor supply ϕ = 1, and Calvo probability
θ = 2/3.5 For some of the graphs we use the ratio of the original shock deviations, r ≡ σu

σg
, where u

and g are non-standardized innovations in the IS and Phillips curves, respectively, cf. (17) and (18).
Without loss of generality, we set σg = 1 in our simulations.

Figure 3 shows the dimensionless threshold for the cost-to-variance ratio for both policy rules,
defined as:

f ≡ κ̄
c̄2

π
=

(
1−R2)

1−R c̄π
b̄π

. (34)

Here, κ̄ is the maximum cost of attention at which the agents are willing to include the output gap
into their forecasting rules. Figure 3 shows that when attention cost is present, the forecasting rule
with the ‘wrong’ variable, Mπ , can be supported under sparse rationality. With very aggressive
policy (ϕπ close to 2), the model with the incorrect variable is never the equilibrium choice, as it
produces a larger MSFE than My. This region is colored blue and shaded in Figure 3. In the
parameter region where the rule Mπ is chosen, the stronger is the policy reaction, the larger is the
range of attention cost consistent with the lagged output gap being included in the forecasting rule.
The agents choose to include both the output gap and inflation for larger attention cost when the
monetary policy is more aggressive. This is evident from the larger area under the threshold for
the cost-to-variance, represented by the solid line. The intuition for this result can be found in the
ALM coefficients. The coefficient on past inflation in the ALM for inflation, b̄π , represented by the
dashed line, is decreasing as ϕπ increases, meaning that inflation becomes predicted better by the
lagged output gap and worse by its own past value. With an increasing importance of the output gap
in predicting inflation, it is not surprising that the agents agree to pay more to include the output gap
in their forecasting rules.

5 These values are taken from Galí 2015, section 3.
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Figure 3: Threshold for the Cost-to-Variance Ratio
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(a) Forward-Looking Rule
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(b) Contemporaneous Rule

Note: The dotted line corresponds to the correlation between output and inflation, the dashed line to b̄π , the
ALM coefficient on past inflation, and the blue solid line to f , the threshold for the cost-to-variance
ratio. The blue-colored region shows the area where MSFEπ>MSFEy. For the numerical plot we set
r ≡ σu

σg
= 0.1, σg = 1.

The correlation between the output gap and inflation (the dotted line in Figure 3) is increasing with
policy aggressiveness. As was discussed in Section 2, the effect of the correlation on the weights is
not linear. When inflation is persistent (the coefficient on its lag is large in the ALM) and volatile,
a larger correlation contributes to a smaller weight on the output gap. When inflation becomes less
persistent and volatile, the agents assign a larger weight to the output gap with a larger correlation.

The two panels of Figure 3 are rather similar, demonstrating that there is no significant difference
between the contemporaneous data-based and expectations-based policy rules. Under the contem-
poraneous policy rule, (20), the PLM with the ‘wrong’ variable, Mπ , can be avoided with less
aggressive monetary policy, as for any ϕπ , the threshold attention cost-to-variance ratio is larger;
the agents therefore find it more important to pay attention to output with rule (20).

Figure 4 shows the weights mi the agents choose for different values of the learning cost, κ , and the
policy parameter, ϕπ , while fixing the ratio of the deviations in the innovations to r = 0.1.6 When
the weight on the output gap is zero but the weight on inflation is positive, the region is denoted as
Mπ , as it corresponds to the agents sticking to the rule with the inflation lag. For large attention cost,
κ , and large ϕπ , the agents choose to have zero weights on both variables and use only the constant
in their forecasting rules. This region in the upper-right corner of Figure 4 is denoted as (0,0). This
only happens for very aggressive monetary policy, where the volatility of both inflation and output
is very small, as shown in Figure 5.

As monetary policy becomes more aggressive, ϕπ increases, the weight on output starts to rise, and
the area denoted by Mπ gets smaller. Thus, when the policy response to inflation is stronger, the
agents switch to a ‘correct’ rule for a larger parameter set. Figure D1 in Appendix D presents the
graph, similar to Figure 4, which plots mπ as a function of (ϕπ , κ).

6 With the standard deviation of the output shock σg fixed, larger r means larger relative inflation volatility. This
results in smaller estimates of the coefficient on inflation and smaller weights. With larger r, Figure 4 and Figure D1
look similar, but the agents move to REE (my > 0) with a smaller policy parameter ϕπ .
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Figure 4: Model Selection under Sparse Weights, My
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Figure 5: Equilibrium Dynamics of Inflation and Output
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(b) Contemporaneous Rule

Note: The dashed line corresponds to the output gap and the solid line to inflation. For the numerical plot we
set r ≡ σu

σg
= 0.1, σg = 1.
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For any strength of the policy response, the rule with contemporaneous inflation results in less
overall volatility. This finding is consistent with the experimental results in Pfajfar and Žakelj
(2018), where the contemporaneous rule is found to produce smaller volatility than the forward-
looking rule. The large inflation volatility in Figure 5 can be linked to large output gap forecast
errors.

Our results contribute to the literature discussing how monetary policy affects not only the level of
expectations, but also the way expectations are formed. In our model, more restrictive monetary
policy reduces the parameter range of stability of the Mπ rule in favor of both the My rule, with the
correct variable, and the intercept-only rule: for large ϕπ the agents either start taking into account
the output gap if κ is small or disregard all variables if κ is larger. The result is intuitive, since in
the model we study, the strength of the policy, ϕπ , reduces the feedback from expectations in the
actual law of motion.7 The role of the feedback parameter is widely studied in the literature. In an
experimental setting, Hommes (2014) and Heemeijer et al. (2009) emphasize the importance of the
expectations feedback parameter. In Hommes (2014), when the expectations feedback parameter
is negative, convergence to REE is observed, but with a positive parameter agents coordinate on
a non-rational self-fulfilling equilibrium. A large feedback parameter results in convergence to a
mis-specified equilibrium in Evans et al. (2012). In the laboratory experiments of Pfajfar and Žakelj
(2014), Pfajfar and Žakelj (2018), and Assenza et al. (2013), agents choose forecasting rules for
inflation under alternative monetary policy regimes differing in terms of the aggressiveness of the
response to inflation in the Taylor rule. As monetary policy becomes more aggressive, more agents
switch to using forecasting rules compatible with rational expectations. This supports our finding
that for low κ and large ϕπ agents increase their weight on the lagged output gap.

Another result of this paper is that agents stick to the AR(1) model for inflation forecasting when
the persistence of inflation is high and/or the correlation between output and inflation is low (see
Figure 3, low values of ϕπ ). This result is in line with the observed behavior of professional fore-
casters after the recent financial crisis. There are a number of studies, examples being Fendel et al.
(2011), Lopez-Perez (2017), and Frenkel et al. (2011) showing that professional forecasters’ pre-
dictions behave as if they were using the Phillips curve. After the financial crisis, inflation became
more persistent – see Watson (2014) – while the Phillips curve got flatter.8 In terms of our model,
this means a lower threshold for the cost-to-variance ratio in Figure 3. Lopez-Perez (2017)9 shows
that forecasters’ predictions started to react much less to unemployment after the financial crisis of
2007–2009, consistent with our model predictions.

4. Conclusion

In this paper we study whether an initially mis-specified forecasting rule which generates a re-
stricted perceptions equilibrium (RPE) can be an equilibrium choice under sparse rationality, thus
perpetuating the RPE if attention is costly. We first consider a simple process consisting only of
exogenous variables, and then generalize our results to a three-equation New Keynesian model with
lagged endogenous variables arising due to agents’ expectations.
7 To see this, consider the coefficient on inflation expectations in the actual law of motion for inflation in (B9) and
(B56) for the forward-looking and contemporaneous rules, respectively.
8 Although the evidence on the flattening of the Phillips curve is mixed due to the different specifications and time
horizons considered, there are studies showing a decline in slope, examples being IMF (2013) and Kuttner and
Robinson (2010). Donayre and Panovska (2016) document breaks in the wage Phillips curve during recessions
and subsequent recoveries.
9 Frenkel et al. (2011) uses data up to 2010Q and does not find evidence for a change in forecasters’ behavior, while
Lopez-Perez (2017) uses a longer data set and includes a forward-looking inflation term in the Phillips curve.
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For both models we find regions in the parameter space, where a RPE with the variable not present
in the MSV RE solution is selected by both the minimum squared forecast error condition and
sparse-rationality considerations. Thus, agents who are reconsidering their initial choice of a mis-
specified RPE could choose to continue using the initial rule. If attention cost is very large, there is
a region of the parameter space where agents choose not to allocate attention to any of the variables.
If attention cost is small, agents tend to switch to the RPE with the variable that is present in the
MSV RE solution, and do this certainly when the attention cost is zero. For a medium range of
attention costs, the initial mis-specified forecasting rule prevails for large persistence of the variable
used in the rule and for large correlation between the included and the omitted variable, especially
if the omitted variable has low persistence. This behavior is explained by the amount of additional
information that is contained in the omitted variable.

In the New Keynesian model we find that when inflation persistence increases, survival of the mis-
specified AR(1) rule for inflation forecasting is achieved for a larger region of the parameter space.
The same is true for smaller correlation between inflation and the output gap. This prediction is
reminiscent of the behavior of professional forecasters, whose predictions are found to be con-
sistent with paying less attention to the output gap after the financial crisis (Lopez-Perez 2017),
when inflation became more persistent and the correlation between output and inflation might have
changed.

We further find that the aggressiveness of the monetary policy rule and, to some extent, the rule
itself, determine the survival of a mis-specified forecasting rule. A strong monetary policy reaction
reduces inflation volatility and persistence, making inflation in the forecasting rule less useful. With
an even stronger monetary policy reaction, agents do not consider the mis-specified forecasting rule
in the first place, because the rule with the output gap, corresponding to the MSV solution, results in
smaller forecast errors. In line with the previous literature, our study supports the importance of the
expectations feedback parameter for the survival of a mis-specified rule. In our model, the feedback
parameter is decreasing with the policy rule parameter. If the expectations feedback is large enough,
the mis-specified forecasting rule may prevail in equilibrium.

As was shown in Slobodyan et al. (2016), monetary policy satisfying E-stability principles under
least-squares learning can lead to instability under alternative learning specifications, Pfajfar and
Žakelj (2018) shows that with stronger monetary policy, more agents switch to rules consistent with
the rational expectations hypothesis. Adding to this literature, our study suggests that providing
conditions for the survival of a particular equilibrium when the agents face attention costs can be
viewed as an additional criterion for the choice of monetary policy.
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Appendix A: Simple Model

A.1 Proposition 2.0.1

Proof. Deriving RPE1. The agents’ PLM consistent with this RPE is

yt = a1 +b1w1
t , (A1)

therefore the ALM is given by

yt = α +βa1 + b̄1w1
t + γ2w2

t +ηt , (A2)

with b̄1 = βρ1b1 + γ1. In what follows, we will set α = 0 and assume that the agents know this;
therefore, a1 = 0 as well.

In order for the agents to be using (A1) in equilibrium, it must be the case that b1 is a coefficient in
the regression of yt on w1

t , or

b1 =
Cov

(
yt ,w1

t
)

Var
(
w1

t
) . (A3)

Computing the above expression for standardized variables we get

Cov
(

yt ,w1
t

)
= Et

[
b̄1w1

t + γ2w2
t +ηt ,w1

t

]
= b̄1 + γ2 ρ, (A4)

b1 = b̄1 + γ2 ρ = (A5)

= βρ1b1 + γ1 + γ2 ρ ⇒ b1 =
γ1 + γ2 ρ
1−βρ1

. (A6)

Deriving RPE2. Similarly to the RPE1 case, we now have the PLM

yt = a2 +b2w2
t , (A7)

which implies that b2 must be equal to the regression coefficient:

b2 =
Cov

(
yt ,w2

t
)

Var
(
w2

t
) = Et

[
b̄1w1

t + γ2w2
t +ηt ,w2

t

]
= (A8)

= (βρ1b1 + γ1) ρ + γ2. (A9)

E-stability. For the solution in (A6) and (A9) to be E-stable, the following should hold:
∂Tb1
∂b1

< 1

and
∂Tb2
∂b2

< 1. Tb1 is given by (A6) and Tb2 by (A9) . That is,
∂Tb1
∂b1

=
∂ [βρ1b1+γ1+γ2 ρ]

∂b1
= βρ1 and

∂Tb2
∂b2

=
∂ [(βρ1b1+γ1)ρ+γ2]

∂b2
= 0. Thus, the only condition to be satisfied is:

βρ1 < 1. (A10)
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With both β<1 and ρ1 < 1 both solutions are E-stable. Next, we want to ensure that the mean
squared forecast error (MSFE) of the agents living in RPE1 and using (A1) is lower than the MSFE
of the agents using (A7).

The forecast error and MSFE of the agents using (A1) are:

e1
t = b̄1w1

t + γ2w2
t +ηt −b1w1

t , (A11)

MSFE1 = E
[
e1

t

]
= E

[((
b̄1 −b1

)
w1

t + γ2w2
t +ηt

)2
]
. (A12)

Similarly, for MSFE2 we have the following expression

e2
t = b̄1w1

t + γ2w2
t +ηt −b2w2

t , (A13)

MSFE2 = E
[
e2

t

]
= E

[(
b̄1w1

t +(γ2 −b2)w2
t +ηt

)2
]
. (A14)

We are looking for the conditions under which MSFE1 < MSFE2 :

: E
[((

b̄1 −b1
)

w1
t + γ2w2

t +ηt

)2
]
< E

[(
b̄1w1

t +(γ2 −b2)w2
t +ηt

)2
]
,

:
{

(βρ1b1 + γ1 −b1)
2 + γ2

2+

2γ2 (βρ1b1 + γ1 −b1) ρ

}
<

{
(βρ1b1 + γ1)

2 +(γ2 −b2)
2+

2(βρ1b1 + γ1)(γ2 −b2) ρ

}
,

:


(βρ1b1 + γ1)

2 +b2
1

−2b1 (βρ1b1 + γ1)+ γ2
2

+2γ2 (βρ1b1 + γ1) ρ−
−2γ2b1 ρ

<


(βρ1b1 + γ1)

2 + γ2
2

−2γ2b2 +b2
2+

+2γ2 (βρ1b1 + γ1) ρ−
−2b2 (βρ1b1 + γ1) ρ

 ,

:
{

b2
1 −2b1 (βρ1b1 + γ1)−

−2γ2b1 ρ

}
<

{
−2γ2b2 +b2

2−
−2b2 (βρ1b1 + γ1) ρσ1σ2

}
,

:

 b2
1−

−2b1(βρ1b1 + γ1 + γ2ρ)
=b1

<

 b2
2−

−2b2(γ2 +(βρ1b1 + γ1) ρ)
=b2

 ,

: −b2
1 <−b2

2 ⇒ b2
1 > b2

2. (A15)

The condition b2
1 > b2

2 has a very simple interpretation: in order for the MSFE of PLM1 to be lower
than that of PLM2, the share of the variance of yt explained by PLM1 must be higher than that of
PLM2. Alternatively, the R2 of regression (A1) must be higher than the R2 of regression (A7).

Note that in the case of non-standardized variables, the condition will be re-written as b2
1σ2

1 > b2
2σ2

2 ,
where the b′s will be related to the standardized case as bnonscaled

i = bscaled
i

σy
σi

.
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A.2 Analyzing the Conditions for MSFE1 < MSFE2

b2
1 > b2

2 ⇔ b2
1 > [(βρ1b1 + γ1)ρ + γ2]

2 ,

b2
1 > [(βρ1b1 + γ1)ρ + γ2]

2 =
[
b̄1ρ + γ2

]2
,

:
[
b̄1 + γ2 ρ

]2
>
[
b̄1 ρ + γ2

]2
,

: b̄2
1 +2b̄1γ2ρ +(γ2)

2 ρ2 > b̄2
1ρ2 +2b̄1ργ2 +(γ2)

2 ,

: b̄2
1

(
1−ρ2

)
> (γ2)

2
(

1−ρ2
)
⇒ b̄2

1 > (γ2)
2 ,

:
∣∣b̄1|
⟩

γ2. (A16)

Theoretically, there could be two separate cases:

CASE I : b̄1 > γ2, (A17)
CASE II : b̄1 <−γ2. (A18)

As CASE I is the most obvious and will happen the most easily (assuming γ1,2 > 0, which is what
we impose; otherwise, just re-define variable wi

t so that γ1,2 become positive), we start with this
case.

A.2.1 CASE I: b̄1 > γ2

Coming back to the condition of MSFE1 < MSFE2, we get

b̄1 > γ2,

γ1 + γ2 ρ βρ1
1−βρ1

> γ2,

γ1 + γ2 ρ βρ1 > γ2 − γ2 βρ1,

γ1 + γ2βρ1 (1+ρ) > γ2,
γ1
γ2

+βρ1ρ +βρ1 −1 > 0. (A19)

Denoting the ratio of the coefficients on the observable shocks γ1
γ2

as Γ, we see that the condition for
CASE I to be true is Γ+ρ βρ1 > 1−βρ1, or

ρ >
1−βρ1 −Γ

βρ1
. (A20)

This condition is satisfied when ρ1 → 1 and Γ is large. Alternatively, when ρ1 ∼ 0 and Γ is small,
so that the numerator is positive, this condition might amount to ρ > 1 and thus be impossible to
satisfy.

A.2.2 CASE II: b̄1 <−γ2

In this case, we have

b̄1 < −γ2,

γ1 + γ2 ρ βρ1
1−βρ1

< −γ2,

γ1 + γ2 ρ βρ1 < −γ2 + γ2 βρ1,
γ1
γ2

+βρ1ρ < −1+βρ1. (A21)
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Using the notation just introduced, the condition b̄1 < −γ2 amounts to Γ+ρ βρ1 +(1−βρ1) < 0.
Consider its intersection with horizontal axis where Γ = 0 . Then ρ < − (1−βρ1)

βρ1
. As |ρ| < 1, the

area where the solution exists is − (1−βρ1)
βρ1

> −1, meaning that βρ1 > 1/2. That is, for the MSFE
condition satisfied for b̄1 < 0, βρ1 must be larger than 1/2.

To sum up, combining the two cases, we see that we need:

|Γ+ρ βρ1|> 1−βρ1. (A22)

A.3 Deriving the Sparse Weights

The sparse weights are derived by minimizing the following expression:

min
m∈[0,1]n

1
2 ∑

i, j=1...n
(1−mi)Λi j

(
1−m j

)
+κ ∑

i, j=1...n
mi, (A23)

with:

Λi j = −σi jawiuaaaw j ,

awi = −u−1
aa uawi ,

uaa =
∂ 2ua

∂a2 =
∂
∂a

(
−(a− b̄1w1

t − b̄2w2
t

)
) =−1,

uawi = b̄i.

Then the cost of inattention is

Λi j = σi jb̄ib̄ j. (A24)

Plugging the cost of inattention as in (A24) into (A23) we get the following problem:

min
m∈[0,1]n

1
2

{
(1−m1)

2 b̄2
1 +2(1−m1)(1−m2)σ12b̄1b̄2 +(1−m2)

2 b̄2
2

}
+

+κ (|m1|+ |m2|) . (A25)

s.t.

mi ≤ 1, (A26)
mi ≥ 0, (A27)

i = 1,2. (A28)

There are nine cases depending on which restriction is binding. Let us as start with the simplest
case, with the inner solution for both weights: 0 < mi < 1.

1. The first-order conditions of (A25) with respect to m1 and m2 are:

[m1] : κ +
1
2
(−2b̄2

1(1−m1)−2b̄1b̄2 (1−m2)σ12 = 0, (A29)

[m2] : κ +
1
2
(−2b̄2

2(1−m2)−2b̄1b̄2 (1−m1)σ12 = 0. (A30)
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Solving (A29) and (A30) for m1 and m2 gives the expressions (14) and (15) in the text.

2. Consider the second case where 0 < m2 < 1, but m1 = 0. The first-order conditions are then
modified as:

[m1] : κ +
1
2
(−2b̄2

1 −2b̄1b̄2 (1−m2)σ12)≥ 0, (A31)

[m2] : κ +
1
2
(−2b̄2

2(1−m2)−2b̄1b̄2σ12) = 0, (A32)

resulting in the following expressions:

[m1] : m2 ≥
b̄2

1 −κ
b̄1b̄2σ12

+1, (A33)

[m2] : m2 =
b̄1b̄2σ12 −κ

b̄2
2

+1. (A34)

3. Consider the third case where 0<m1 < 1, but m2 = 0. The first-order conditions are then modified
as:

[m1] : κ +
1
2
(−2b̄2

1 +2m1b̄2
1 −2b̄1b̄2σ12) = 0, (A35)

[m2] : κ +
1
2
(−2b̄2

2 −2b̄1b̄2σ12(1−m1))≥ 0, (A36)

resulting in the following expressions:

[m1] : m1 =
b̄1b̄2σ12 −κ

b̄2
1

+1, (A37)

[m2] :

m1 ≥ b̄2
2−κ

b̄1b̄2σ12
+1 if b̄1b̄2σ12 > 0,

m1 ≤ b̄2
2−κ

b̄1b̄2σ12
+1 if b̄1b̄2σ12 < 0.

(A38)

Combining these two expressions yields:
b̄1b̄2σ12−κ

b̄2
1

≥ b̄2
2−κ

b̄1b̄2σ12
if b̄1b̄2σ12 > 0,

b̄1b̄2σ12−κ
b̄2

1
≤ b̄2

2−κ
b̄1b̄2σ12

if b̄1b̄2σ12 < 0,
(A39)

{
b̄2

1b̄2
2σ2

12 −κ b̄1b̄2σ12 ≥ b̄2
2b̄2

1 −κ b̄2
1 if b̄1b̄2σ12 > 0,

b̄2
1b̄2

2σ2
12 −κ b̄1b̄2σ12 ≤ b̄2

2b̄2
1 −κ b̄2

1 if b̄1b̄2σ12 < 0,
(A40){

b̄2
1b̄2

2σ2
12 − b̄2

2b̄2
1 ≥ κ(b̄1b̄2σ12 − b̄2

1) if b̄1b̄2σ12 > 0,

b̄2
1b̄2

2σ2
12 − b̄2

2b̄2
1 ≤ κ(b̄1b̄2σ12 − b̄2

1) if b̄1b̄2σ12 < 0,
(A41)

As σ2
12 = ρ2 < 1 and b̄1b̄2σ12 < b̄2

1, the two inequalities establish the bound on κ: κ ≤ b̄2
1b̄2

2σ2
12−b̄2

2b̄2
1

(b̄1b̄2σ12−b̄2
1σ2

1 )

4. Consider the third case where both weights are zero. The first-order conditions are then modified
as:

[m1] : κ +
1
2
(−2b̄2

1 −2b̄1b̄2σ12)≥ 0, (A42)

[m2] : κ +
1
2
(−2b̄2

2 −2b̄1b̄2σ12)≥ 0, (A43)
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which give the conditions on attention cost, κ:

κ ≥ b̄2
2 + b̄1b̄2σ12, (A44)

κ ≥ b̄2
1 + b̄1b̄2σ12. (A45)

5. m1 = 1 and m2 = 0, with λ1 as a Lagrange multiplier associated with (A26) for m1:

[m1] : κ − b̄1b̄2σ12 +λ1 = 0, (A46)
[m2] : κ − b̄2

2 ≥ 0, (A47)

resulting in the conditions for κ: κ ≥ b̄2
2 and κ ≤ b̄1b̄2σ12 (otherwise λ1 < 0, which would violate

the optimality conditions)

6. Similarly for m1 = 0 and m2 = 1, with λ2 as a Lagrange multiplier associated with (A26) for m2:

[m1] : κ − b̄2
1 ≥ 0, (A48)

[m2] : κ − b̄1b̄2σ12 +λ2 = 0, (A49)

resulting in the conditions for κ: κ ≥ b̄2
1 and κ ≤ b̄1b̄2σ12 (otherwise λ2 < 0, which would violate

the optimality conditions)

7. For both weights equal to unity, m1 = 1 and m2 = 1

[m1] : κ +λ1 = 0, (A50)
[m2] : κ +λ2 = 0, (A51)

resulting in λ2 = λ1 = κ = 0,

8. For m1 = 1 and 0 < m2 < 1:

[m1] : κ − b̄1b̄2 (1−m2)σ12 +λ1 = 0, (A52)
[m2] : κ − b̄2

2(1−m2) = 0, (A53)

resulting in:

m2 = 1− κ
b̄2

2
, (A54)

κ < b̄2
2, (A55)

b̄1b̄2σ12 ≥ b̄2
2, (A56)

where the last inequality comes from the expression for λ1 = κ( b̄1b̄2σ12
b̄2

2
−1) and the condition λ1 ≥ 0.

9. For m2 = 1 and 0 < m1 < 1:

[m1] : κ − b̄2
1(1−m1) = 0, (A57)

[m2] : κ − b̄1b̄2 (1−m1)σ12 +λ2 = 0, (A58)
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resulting in:

m1 = 1− κ
b̄2

1
, (A59)

κ < b̄2
1. (A60)

Now define the value function as V j, with j being the above solution case, and compare which of
the solutions results in the minimum.

[0 < m1 < 1,0 < m2 < 1] V1 = 2κ −
κ2(b̄2

1 −2σ12b̄2b̄1 + b̄2
2)

2(b̄2
2b̄2

1 −σ2
12b̄2

1b̄2
2)

, (A61)

[m1 = 0,0 < m2 < 1] V2 =
1
2

b̄2
1 +κ − (σ12b̄1b̄2 −κ)2

2b̄2
2

, (A62)

[0 < m1 < 1,m2 = 0] V3 =
1
2

b̄2
2 +κ − (σ12b̄1b̄2 −κ)2

2b̄2
1

, (A63)

[m1 = 0,m2 = 0] V4 =
1
2
(b̄2

2 + b̄2
1 +2σ12b̄1b̄2), (A64)

[m1 = 1,m2 = 0] V5 =
1
2

b̄2
2 +κ, (A65)

[m1 = 0,m2 = 1] V6 =
1
2

b̄2
1 +κ, (A66)

[m1 = 1,m2 = 1] V7 = 2κ, (A67)

[m1 = 1,0 < m2 < 1] V8 = 2κ − κ2

2b̄2
2
, (A68)

[0 < m1 < 1,m2 = 1] V9 = 2κ − κ2

2b̄2
1
. (A69)

Now compare the value functions.

V8 <V9 : 2κ − κ2

2b̄2
2
< 2κ − κ2

2b̄2
1
, (A70)

⇒ b̄2
2 < b̄2

1. (A71)

V1 <V3 : 2κ −
κ2(b̄2

1 −2ρ b̄2b̄1 + b̄2
2)

2b̄2
2b̄2

1(1−ρ2)
<

1
2

b̄2
2 +κ − (σ12b̄1b̄2 −κ)2

2b̄2
1

, (A72)

: κ(1− ρ b̄2
b̄1

)−
κ2(1−2ρ b̄2

b̄1
+ρ2 b̄2

2
b̄2

1
)

2b̄2
2(1−ρ2)

<
1
2

b̄2
2(1−ρ2), (A73)

: 2κ(1−ρ2)(1− ρ b̄2
b̄1

)b̄2
2 −κ2(1− ρ b̄2

b̄1
)2 − b̄4

2(1−ρ2)2 < 0, (A74)

: −(κ(1− ρ b̄2
b̄1

)− b̄2(1−ρ2))2 < 0. (A75)
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V1 <V5 : 2κ −
κ2(b̄2

1 −2ρ b̄2b̄1 + b̄2
2)

2b̄2
2b̄2

1(1−ρ2)
<

1
2

b̄2
2 +κ, (A76)

: 2κ b̄2
2 −

κ2(1−2ρ b̄2
b̄1

+
b̄2

2
b̄2

1
)

(1−ρ2)
< b̄4

2, (A77)

: −(κ − b̄2
2)

2 −
κ2(1−2ρ b̄2

b̄1
+

b̄2
2

b̄2
1
)

(1−ρ2)
+κ2 < 0, (A78)

: −(κ − b̄2
2)

2 −
κ2(−2ρ b̄2

b̄1
+

b̄2
2

b̄2
1
+ρ2)

(1−ρ2)
< 0, (A79)

: −(κ − b̄2
2)

2 −
κ2(ρ − b̄2

b̄1
)2

(1−ρ2)
< 0, (A80)

(A81)

V1 <V8 : 2κ −
κ2(b̄2

1 −2ρ b̄2b̄1 + b̄2
2)

2b̄2
2b̄2

1(1−ρ2)
< 2κ − κ2

2b̄2
2
, (A82)

: −
κ2(ρ2 −2ρ b̄2

b̄1
+

b̄2
2

b̄2
1
)

2b̄2
2(1−ρ2)

< 0, (A83)

: −
κ2(ρ − b̄2

b̄1
)2

2b̄2
2(1−ρ2)

< 0, (A84)

V3 <V2 :
1
2

b̄2
2 +κ − (σ12b̄1b̄2 −κ)2

2b̄2
1

<
1
2

b̄2
1 +κ − (σ12b̄1b̄2 −κ)2

2b̄2
2

, (A85)

⇒ b̄2
2 < b̄2

1. (A86)

V5 <V6 :
1
2

σ2
2 b̄2

2 +κ <
1
2

σ2
1 b̄2

1 +κ, (A87)

: ⇒ b̄2
2 < b̄2

1. (A88)

Thus, if an inner solution exists for Mπy, it outperforms the corner solution for Mπ : V1 < V5 < V 6,
V1 <V3 <V 2, and the corner solution for Mπy with w1 = 1: V1 <V8 <V9.

A.4 Proof of Proposition 2.0.2

Proof. Proposition 2.0.2. To have m1 > m2 in the inner solution, we need:

− κ
b̄1b̄2

(
1−ρ2

) b̄2 − b̄1ρ
b̄1

> − κ
b̄1b̄2

(
1−ρ2

) b̄1 −ρ b̄2
b̄2

,

− 1
b̄1

b̄2 − b̄1ρ
b̄1

> − 1
b̄1

b̄1 −ρ b̄2
b̄2

,(
b̄2 − b̄1ρ

)
b̄2 < b̄1

(
b̄1 −ρ b̄2

)
,

b̄2
2 − b̄1b̄2ρ < b̄2

1 − b̄1b̄2ρ,
b̄2

2 < b̄2
1. (A89)
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For κ such that the inner solution does not exist, solutions with m1 > m2 are optimal for b̄2
2 < b̄2

1 –
see (A70)–(A87).

A.5 Representing Inattention Cost as an Ellipse

Note that the first term in (A25) can be written as:

b̄2
1

2
(x̄2 +2ρ bs x̄ȳ+ ȳ2bs2) = c, (A90)

where c is a constant, x̄ = 1−m1, ȳ = 1−m2, and bs = b̄2
b̄1

. The presence of the xy term indicates that

the ellipse is rotated along the axes. The angle of rotation θ is then defined by cot(2θ) = 1−bs2

2ρ bs .

Appendix B: Three-Equation New Keynesian Model

B.1 The Model

The model we use is similar to the textbook model as in Galí 2015, section 3, but with external habit
formation. Here we sketch the main equations that reflect the difference from the textbook model.
The detailed derivations can be found in Galí 2015, section 3. There is a continuum of identical
households, each of them maximizing its intertemporal utility:

E0

∞
∑
t=0

β tUt , (B1)

where β is the discount factor and U is the instantaneous utility function with external habit forma-
tion, such that:

Ut = eg̃t

(
1

1−σ
(Ct −hCt−1)

1−σ − 1
1+ϕ

L1+ϕ
t

)
. (B2)

Utility is increasing in consumption, C, relative to the previous period consumption, and is decreas-
ing in labor supply, l. Habit persistence is governed by parameter h, σ is the coefficient of relative
risk aversion, and ϕ is the inverse of the elasticity of work effort with respect to the real wage. eg̃t

is the shock to the discount rate.

Households maximize utility subject to the budget constraint:

PtCt +QtBt ≤ Bt−1 +WtLt +Dt , (B3)

where Pt is the price of the consumption good, Wt is the nominal wage, Bt is the quantity of one-
period nominally riskless discount bonds, each of them paying Qt on maturity, and Dt are the div-
idends that households receive as firm owners. The problem results in the following optimality
conditions for consumption for a representative household:

Qt = βEt

((
eg̃t+1(Ct+1 −hCt)

eg̃t (Ct −hCt−1)

)−σ
(−h)

Pt
Pt+1

)
. (B4)

After linearization, the consumption equation is:

ĉt =
h

1+h
ĉt−1 +

1
1+h

Et ĉt+1 −
1−h

(1+h)σ
(it −Etπt+1)+

1−h
(1+h)σ

(g̃t −Et g̃t+1). (B5)
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In this simple model environment with yt = ct , the linearized equation for the output gap is:

ŷt =
h

1+h
ŷt−1 +

1
1+h

Et ŷt+1 −
1−h

(1+h)σ
(it −Etπt+1)+

1−h
(1+h)σ

g̃t , (B6)

where we have used the fact that Et g̃t+1 = 0. Under extreme habit formation with limh→∞, the
equation for the output gap loses the forward-looking argument:

ŷt = ŷt−1 −
1
σ
(it −Etπt+1)+gt , (B7)

with rescaled gt =
1
σ g̃t . This is equation (17) in the text.

As the derivation of the Phillips curve, (18), is identical to Galí 2015, section 3, the reader is referred
to the textbook for the details.

B.2 Rational Expectations Equilibria

Proof. Proposition 3.0.1

Deriving REE with the forward-looking policy rule. The solution of the model under the forward-
looking rule is:

yt =
1−ϕπ

σ
Etπt+1 + yt−1 +gt , (B8)

πt = (β +ω
1−ϕπ

σ
)Etπt+1 +ωyt−1 +ωgt +ut . (B9)

We re-define the coefficients in (B8) and (B9) as:

by =
1−ϕπ

σ
, (B10)

bπ = β +ω
1−ϕπ

σ
. (B11)

cπ = ω. (B12)

There are two sets of solutions consistent with rational expectations. One set is associated with the
following forecasting rule:

πREE
t = cyt−1 +bπt−1 +dgt + zut , (B13)

yREE
t = c̃yt−1 + b̃πt−1 + d̃gt + z̃ut , (B14)

EtπREE
t+1 = cyt +bπt = c(c̃+b)yt−1 +(cb̃+b2)πt−1 +(cd̃ +bd)gt +(bz+ cz̃)ut . (B15)

Plugging the forecasting rules into (B9) and using the method of undetermined coefficients yields:

b = bπ(cb̃+b2), (B16)
c = bπc(c̃+b)+ω, (B17)
d = bπ(cd̃ +bd)+ω, (B18)
z = bπ(bz+ cz̃)+1, (B19)
b̃ = by(cb̃+b2), (B20)
c̃ = byc(c̃+b)+1, (B21)
z̃ = by(bz+ cz̃). (B22)
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With the solution:

b =
1
β
, (B23)

c = −ω
β
, (B24)

0 = 0, (B25)
0 = β , (B26)

b̃ = −
by

ωbπ
, (B27)

c̃ =
β −ωby

βbπ
, (B28)

0 = 0, (B29)
z̃ ∈ /0. (B30)

Clearly, the REE solution is not unique, as there are multiple solutions for d. Note that there is no
solution for z.

Another set of REE-consistent solutions is the MSV solution of the form:

πMSV
t = cyt−1 +dgt + zut , (B31)

EtπMSV
t+1 = cyt = cbyEtπt+1 + cyt−1 + cgt , (B32)

EtπMSV
t+1 =

c
1− cby

yt−1 +
c

1− cby
gt . (B33)

Plugging the forecasting rule into (B9) yields:

πt =

(
cbπ

1− cby
+ cπ

)
yt−1 +

(
cbπ

1− cby
+ cπ

)
gt +ut , (B34)

yt =
1

1− cby
yt−1 +

1
1− cby

gt , (B35)

with the coefficients defined as in (B10) and (B12). Using the method of undetermined coefficients,
we solve for the forecasting rule coefficients.

c =
cbπ

1− cby
+ cπ , (B36)

d =
cbπ

1− cby
+ cπ , (B37)

z = 1. (B38)

The MSV solution is:

d =
cbπ

1− cby
+ cπ , (B39)

z = 1, (B40)

c2 =
1−β +

√
(1−β )2 −4ω 1−ϕπ

σ

21−ϕπ
σ

, (B41)

c1 =
1−β −

√
(1−β )2 −4ω 1−ϕπ

σ

21−ϕπ
σ

. (B42)
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Analyzing the solution in (B42), note that the solution exists only if ϕπ > 1− (1−β )2σ
4ω . In the spirit

of McCallum (2003), we consider a MSV solution that in the special case of ω = 0 would converge
to 0. Clearly, this is (B42). The ALM coefficients are then:

c̄MSV
y =

1
1−byc

, (B43)

c̄MSV
π =

cbπ
1−byc

+ cπ . (B44)

(B45)

E-stability. For the MSV solution to be E-stable, the following should hold

eig

( ∂Tc
∂c

∂Tc
∂d

∂Td,c
∂c

∂Td,c
∂d

)
= eig

 bπ
(1−byc)2 0

bπ
(1−byc)2 0

< 1.

The eigenvalues of the above matrix are [0, bπ
(1−byc)2 ]. The criterion for E-stability is then:

bπ
(1−byc)2 < 1 ⇒ 1−bπ −2byc+(byc)2 > 0. (B46)

Note that the above inequality is an upward open parabola in c. That is, if c1 and c2 are the roots of
the parabola, and the roots exist, the inequality is satisfied when c lies outside the interval [c1,c2].
If roots do not exist, then the inequality is satisfied on the whole parameter range. The roots of the
parabola are c1,2 = 1±

√
bπ

by
. The real roots do not exist when bπ < 0, that is, ϕπ > 1+ βσ

ω .

If ϕπ < 1+ βσ
ω and ϕπ > 1, then:

c1 =
1+
√

β +
ω(1−ϕπ )

σ
(1−ϕπ )

σ

, (B47)

c2 =
1−
√

β +
ω(1−ϕπ )

σ
(1−ϕπ )

σ

, (B48)

with c2 > c1 as the denominator is negative. It is straightforward to show that c in (B42) is larger
than c2:

1−β −
√

(1−β )2 −4ω 1−ϕπ
σ

21−ϕπ
σ

>
1−
√

β +
ω(1−ϕπ )

σ
(1−ϕπ )

σ

, (B49)

⇒
1−β −

√
(1−β )2 −4ω 1−ϕπ

σ
2

< 1−
√

β +
ω(1−ϕπ)

σ
. (B50)

Now, if ω = 0, the above inequality transforms into 0 < 1−
√

β , with β < 1. When ω increases, the
left-hand side decreases, but the right hand side increases. That is why the inequality is satisfied.

If ϕπ < 1+ βσ
ω and ϕπ < 1, then c2 < c1. Clearly, c < c1. For the solution to be E-stable, it must then

hold that c < c2, which is equivalent to:
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1−β −
√

(1−β )2 −4ω 1−ϕπ
σ

2
< 1−

√
β +

ω(1−ϕπ)

σ
, (B51)

⇒ −(b−a)−
√

b2 −a2 < 0, (B52)

where b = 1+β
2 and a =

√
bπ . The inequality holds for b−a > 0, that is for ϕπ > 1− (1−β )2σ

4ω .

Determinacy. Representing the ALM as zt = A+Bzt−1+Ut , with zt = (yt ,πt)
′, A and Ut are vectors

of the constants and shocks respectively, and

B =

(
c̄MSV

y b̄MSV
y

c̄MSV
π b̄MSV

π

)
. (B53)

For the solution to be determinate, both eigenvalues of B53 must be inside the unit circle, where the
eigenvalues are (0, c̄MSV

y ). That is, the condition for determinacy is:

|c̄MSV
y |< 1 → | 1

1−byc
|< 1 → byc < 0 → by < 0 → ϕπ > 1. (B54)

Where in the derivations we have used c > 0 and c < 1, that follows from (B50). Thus, with ϕπ > 1,
the MSV solution is both determinate and E-Stable.

Deriving REE when the rule with contemporaneous inflation expectations is used. The model
solution is:

yt = −ϕπ
σ

Etπt +
1
σ

Etπt+1 + yt−1 +gt , (B55)

πt = (β +
ω
σ
)Etπt+1 −

ωϕπ
σ

Etπt +ωyt−1 +ωgt +ut . (B56)

The forecasting rule consistent with REE will be:

πREE
t = cyt−1 +bπt−1 +dgt + zut , (B57)

yREE
t = c̃yt−1 + b̃πt−1 + d̃gt + z̃ut , (B58)

EtπREE
t+1 = cyt +bπt = c(c̃+b)yt−1 +(cb̃+b2)πt−1 +(cd̃ +bd)gt +(bz+ cz̃)ut . (B59)
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Plugging the forecasting rule into (B9) and using the method of undetermined coefficients,we get
the following mapping:

b =
(

β +
ω
σ

)
(cb̃+b2)− ω

σ
ϕπb, (B60)

c =
(

β +
ω
σ

)
c(c̃+b)− ω

σ
ϕπc+ω, (B61)

d =
(

β +
ω
σ

)
(cd̃ +bd)− ω

σ
ϕπd +ω, (B62)

z =
(

β +
ω
σ

)
(cz̃+bz)− ω

σ
ϕπz+1, (B63)

b̃ = −ω
σ

ϕπb+
1
σ
(cb̃+b2), (B64)

c̃ = −ω
σ

ϕπc+
c
σ
(c̃+b), (B65)

d̃ = −ω
σ

ϕπd +
1
σ
(cd̃ +bd), (B66)

z̃ = −ω
σ

ϕπz+
1
σ
(cz̃+bz), (B67)

(B68)

And the set of solutions compatible with rational expectations is:

b =
1
β
, (B69)

c = −ω
β
, (B70)

0 = 0, (B71)
z = /0. (B72)

Again, there are multiple solutions for d, and there is no solution for z.

Let us now consider the MSV solution. With the MSV forecasting rules as in (B31):

πMSV
t = cyt−1 +dgt + zut , (B73)

πMSV
t+1 = cyt =−ϕπc

σ
Etπt +

c
σ

Etπt+1 + cyt−1 + cgt , (B74)

πMSV
t+1 = − σ

σ − c
ϕπc
σ

(cyt−1 +dgt + zut)+
σ

σ − c
cyt−1 +

σ
σ − c

cgt

=

(
− σ

σ − c
ϕπc2

σ
+

σ
σ − c

c

)
yt−1 +

(
− σ

σ − c
ϕπcd

σ
+

σ
σ − c

c
)

gt −
σz

σ − c
ϕπc
σ

ut .(B75)

Plugging the expressions into the rule of motion for inflation:

πt =
(

β +
ω
σ

)((
− σ

σ − c
ϕπc2

σ
+

σ
σ − c

c

)
yt−1 +

(
− σ

σ − c
ϕπcd

σ
+

σ
σ − c

c
)

gt −
σz

σ − c
ϕπc
σ

ut

)

− ωϕπ
σ

(cyt−1 +dgt + zut)+ωyt−1 +ωgt +ut

=

(
(β +

ω
σ
)(− σ

σ − c
ϕπc2

σ
+

σ
σ − c

c)− ωϕπ
σ

c+ω

)
yt−1

+

(
(β +

ω
σ
)(− σ

σ − c
ϕπcd

σ
+

σ
σ − c

c)− ωϕπ
σ

d +ω
)

gt +

(
−ωϕπz

σ
+1
)

ut . (B76)
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For output:

yt =

(
−ϕπ

σ
c− ϕπc2

σ(σ − c)
+

c
σ − c

+1

)
yt−1 −

ϕπ
σ

dgt −
ϕπ
σ

zut +(
−

ϕπ cd
σ−c
σ

+
c

σ − c

)
gt −

zϕπc
σ(σ − c)

ut +gt , (B77)

c =

(
βσ +ω

σ

)(
− 1

σ − c
ϕπc2

1
+

σ
σ − c

c

)
− ωϕπ

σ
c+ω

= −βσ +ω
σ − c

ϕπc2

σ
+

βσ +ω
σ − c

c− ωϕπ
σ

c+ω, (B78)

σc− c2 =−βσ
ϕπc2

σ
−ω

ϕπc2

σ
+βσc+ωc−ωc

ϕπ
σ

σ +ωc2 ϕπ
σ

−ωc+ωσ

c(σ −βσ +ωϕπ)+ c2 (−1+βϕπ) = ωσ .

d =
(

β +
ω
σ

)(
− σ

σ − c
ϕπcd

σ
+

σ
σ − c

c
)
− ωϕπ

σ
d +ω

=

(
βσ +ω
σ − c

)
c
(

1− ϕπd
σ

)
− ωϕπ

σ
d, (B79)

z = −ωϕπz
σ

+1. (B80)

c =
(1−β )+ ϕπ

σ ω ±
√(

(1−β )+ ϕπ
σ ω

)2
−4ω

(
(1−βϕπ )

σ

)
2 (1−βϕπ )

σ

. (B81)

Using the same logic as above, we leave only the MSV solution that is zero if ω = 0. That is:

c =
(1−β )+ ϕπ

σ ω −
√(

(1−β )+ ϕπ
σ ω

)2
−4ω

(
(1−βϕπ )

σ

)
2 (1−βϕπ )

σ

. (B82)

Note that c ≥ 0. It can be written as:

c =
a−
√

a2 −4ωb
2b

,

a = (1−β )+
ϕπ
σ

ω,

b =
(1−βϕπ)

σ
.

Now, if b < 0, both the numerator and the denominator in c are negative, making c positive. If b > 0,
both the numerator and the denominator are positive, and c is positive. It is instructive for future
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derivations to show that c < σ for ϕπ > 1. Suppose that c > σ :

c =
a−
√

a2 −4ωb
2b

> σ , =⇒

{
a−
√

a2 −4ωb > 2bσ , if b > 0,

a−
√

a2 −4ωb < 2bσ , if b < 0,

=⇒

{
a−2bσ >

√
a2 −4ωb, if b > 0,

a−2bσ <
√

a2 −4ωb, if b < 0,
=⇒

{
a2 +4b2σ2 −4baσ > a2 −4ωb, if b > 0,

a2 +4b2σ2 −4baσ < a2 −4ωb, if b < 0,

=⇒

{
bσ2 −aσ >−ω, if b > 0,

bσ2 −aσ >−ω, if b < 0,

=⇒

{
b > a

σ − ω
σ2 , if b > 0,

b > a
σ − ω

σ2 , if b < 0,
=⇒


(1−βϕπ )

σ >
(1−β )+ ϕπ ω

σ
σ − ω

σ2 , if b > 0,
(1−βϕπ )

σ <
(1−β )+ ϕπ ω

σ
σ − ω

σ2 , if b > 0,

=⇒

{
(1−βϕπ)> (1−β )+ ϕπ ω

σ − ω
σ , if b > 0,

(1−βϕπ)> (1−β )+ ϕπ ω
σ − ω

σ , if b < 0,
=⇒

{
(1−ϕπ)(β + ω

σ )> 0, if b > 0,

(1−ϕπ)(β + ω
σ )> 0, if b < 0.

Clearly, c > σ only if ϕπ < 1.

E-stability. We calculate the eigenvalues of the following matrix:


(βσ+ω)( c2ϕπ

σ −2cϕπ+σ)

(σ−c)2 − ωϕπ
σ 0 0

(βσ+ω)σ(1−ϕπ d)
(σ−c)2 − (βσ+ω)

σ−c
cϕπ
σ − ωϕπ

σ 0

0 0 −ωϕπ
σ

 .

The eigenvalues are [−ωϕπ
σ ,

(βσ+ω)( c2ϕπ
σ −2cϕπ+σ)

(σ−c)2 − ωϕπ
σ ,− (βσ+ω)

σ−c
cϕπ
σ − ωϕπ

σ ]. Clearly, −ωϕπ
σ < 0,

− (βσ+ω)
σ−c

cϕπ
σ − ωϕπ

σ < 1 for c < σ :

−βσ +ω
σ − c

cϕπ
σ

− ωϕπ
σ

=
ϕπ
σ

−βσc−ωc−ωσ + cω
σ − c

=
ϕπ

σ − c
(−βc−ω)< 1, =⇒

{
ϕπ(−βc−ω)< σ − c, if σ − c > 0,

ϕπ(−βc−ω)> σ − c, if σ − c < 0,

=⇒

{
c1−βϕπ

σ < 1+ ϕπ ω
σ , if σ − c > 0,

c1−βϕπ
σ > 1+ ϕπ ω

σ , if σ − c < 0,

=⇒




c <

1+ ϕπ ω
σ

1−βϕπ
σ

, if σ − c > 0 and 1−βϕπ > 0,

c >
1+ ϕπ ω

σ
1−βϕπ

σ
, if σ − c > 0 and 1−βϕπ < 0,

c >
1+ ϕπ ω

σ
1−βϕπ

σ
, if σ − c < 0 and 1−βϕπ > 0,

c <
1+ ϕπ ω

σ
1−βϕπ

σ
, if σ − c < 0 and 1−βϕπ < 0.

Note that in (B82), 1−β + ϕπ ω
σ < 1+ ϕπ ω

σ . Also, for 1−βϕπ < 0, c>
1+ ϕπ ω

σ
1−βϕπ

σ
and is smaller otherwise.

Then, all cases with σ −c < 0 belong to the empty set. Thus, for c < σ , the last eigenvalue is smaller
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than unity. For the second eigenvalue to be smaller than unity:

(βσ +ω)(c2ϕπ
σ −2cϕπ +σ)

(σ − c)2 < 1+
ωϕπ

σ
,

=⇒ (βσ +ω)(
c2ϕπ

σ
−2cϕπ +σ)< (σ − c)2(1+

ωϕπ
σ

), =⇒

βσ
c2ϕπ

σ
+ω

c2ϕπ
σ

−2βσcϕπ −2cϕπω +σβσ +σω < (σ − c)2 +σ2 ωϕπ
σ

−2σc
ωϕπ

σ
+ c2 ωϕπ

σ
,

=⇒ ϕπ(βc2 −2βσc−σω)< (σ − c)2 −σ(σβ +ω),

=⇒ ϕπ(β (c−σ)2 −σ(βσ +ω))< (σ − c)2 −σ(σβ +ω),

=⇒

ϕπ <
(σ−c)2−σ(σβ+ω)

β (c−σ)2−σ(βσ+ω)
if β (c−σ)2 −σ(βσ +ω)> 0,

ϕπ >
(σ−c)2−σ(σβ+ω)

β (c−σ)2−σ(βσ+ω)
if β (c−σ)2 −σ(βσ +ω)< 0.

(B83)

Both β (c−σ)2 −σ(βσ +ω) and (σ − c)2 −σ(σβ +ω) are upward open parabolas in c, with the
same roots σ ±

√
σ(βσ +ω). With the standard calibration we use, σβ + ω > σ , that is, σ −√

σ(βσ +ω)< 0, while c> 0. Also, we are only interested in the region where c<σ (otherwise, the
third eigenvalue is large than unity), i.e., c < σ +

√
σ(βσ +ω). Then, β (c−σ)2 −σ(βσ +ω)< 0,

and the condition for ϕπ is:

ϕπ >
(σ − c)2 −σ(σβ +ω)

β (c−σ)2 −σ(βσ +ω)
> 1. (B84)

Determinacy. Similar to the case with the forward-looking rule, the condition for determinacy is:

|c̄MSV
y |< 1 =⇒ |− ϕπ

σ
c− ϕπc2

σ(σ − c)
+

c
σ − c

+1|< 1, (B85)

=⇒ |− (ϕπ −1)c
σ − c

+1|< 1. (B86)

The inequality holds for ϕπ −1 > 0 and σ > c, where the solution is E-stable. If − (ϕπ−1)c
σ−c +1 < 0,

that is, −ϕπ c−σ
σ−c < 0, and ϕπ > σ

c , then the condition for determinacy is −ϕπ c−σ
σ−c > −1 or ϕπ <

2σ
c +1.

B.3 E-Stability and the MSFE Criterion

Proof. Proposition 3.0.2. Forward-looking policy rule. We first derive the coefficients in the
agents’ forecast rules and in the actual law of motion for inflation and output conditional on agents
using the Mπ rule:

πt = b̄ππt−1 + c̄πyt−1 +ωgt +ut , (B87)
yt = b̄yπt−1 + c̄yyt−1 +gt , (B88)

where the ALM coefficients are the following:

b̄y = by(βπ)
2, (B89)

c̄y = cy, (B90)

b̄π = bπ(βπ)
2, (B91)

c̄π = cπ , (B92)
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with bπ , cπ , by, and cy being the re-defined coefficients for the standardization from (B10)–(B12)
as:

by =
σπ
σy

1−ϕπ
σ

, (B93)

cy = 1, (B94)

bπ =
σπ
σπ

(
β +ω

1−ϕπ
σ

)
, (B95)

cπ =
σy

σπ
ω. (B96)

Deriving Mπ . As in the case of the simple model, we allow our agents to be econometricians
who estimate the coefficients for their learning rule as regression coefficients. Then, for Mπ the
coefficient is:

βπ =
Cov(πt ,πt−1)

Var (πt−1)
=

Cov
(
āπ + b̄ππt−1 + c̄πyt−1,πt−1

)
Var (πt−1)

,

denoting σπy ≡Cov(y,π), σ2
π ≡Var (π) = 1, σ2

y ≡Var(y) = 1:

βπ = b̄π + c̄πσπy. (B97)

Deriving My. Coefficient cy
π is then determined as a regression coefficient:

cy
π =

Cov(πt ,yt−1)

Var (yt−1)
=

Cov
(
āπ + b̄ππt−1 + c̄πyt−1,yt−1

)
Var (yt−1)

=

= b̄πσπy + c̄π . (B98)

E-stability. With the coefficients of the actual law of motion defined as in (B89)–(B92). For Mπ
to be E-stable under least-squares learning, the following must be satisfied

∂Tβ
∂βπ

< 1,

where Tβ is as in (B97). The plot of this condition is shown in Figure B1. For My to be E-stable
under least-squares learning, the following must be satisfied

∂Tcy

∂cy
π

< 1.

With Tcy as in (B98) the condition is satisfied.

Moving to contemporaneous inflation in the policy rule, we solve for the coefficients of the actual
law of motion as:

b̄y = βπ(bc
y +b f

y βπ), (B99)
c̄y = 1, (B100)

b̄π = βπ(bc
π +b f

πβπ), (B101)
c̄π = ω, (B102)
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where the model coefficients are adjusted as:

b f
y =

σπ
σy

1
σ
, (B103)

bc
y = −σπ

σy

ϕπ
σ

, (B104)

cy =
σy

σy
= 1, (B105)

b f
π =

σπ
σπ

(
β +

ω
σ

)
= β +

ω
σ
, (B106)

bc
π = −σπ

σπ

ωϕπ
σ

=−ωϕπ
σ

, (B107)

cπ = ω. (B108)

The solutions for Mπ and My look the same as in (B97) and in (B98), respectively, where the ALM
coefficients are given in (B99)–(B102).

MSFE. For the agents to use Mπ as the forecasting rule in equilibrium, the rule must produce a
better forecast than the alternative My. We compare the quality of the forecasts based on the mean
squared forecast error criterion. In the calculations below we denote the correlation between output
and inflation as R. The correlation is then R = σπy, with σπy ≡ Cov(π,y), σπ ≡

√
Var (π) = 1,

σy ≡
√

Var (y) = 1. We start with the mean forecast error of Mπ . The forecast error of Mπ is the
difference between the forecast and actual inflation:

: eπ
t = (βπ − b̄π)πt−1 − c̄πyt−1 +µt

= (b̄π + c̄πR− b̄π)πt−1 − c̄πyt−1 +µt

= c̄πRπt−1 − c̄πyt−1 +µt , (B109)

where µt ≡
ωσg
σπ

gt +
σu
σπ

ut is a composite of standardized shocks

: MSFEπ = Et(eπ
t )

2 = Et [c̄πR(πt−1)− c̄π(yt−1)]
2

: = Et [c̄2
πR2(πt−1)

2 −2c̄πRc̄π(πt−1 − π̄)(yt−1)+ c̄2
π(yt−1)

2 +1]

: = c̄2
π(R

2 +1−2Rσπy)+1

: = c̄2
π(R

2 +1−2R2)+1

: = c̄2
π(1−R2)+1, (B110)

where the unity term refers to σµ = 1. Similarly, the forecast error of My is:

: ey
t =

(
cy

y − c̄π
)

yt−1 − b̄ππt−1 +µt =

: = b̄πσπyyt−1 − b̄ππt−1 +µt =

: MSFEy = E[b̄π [R(yt−1)− (πt−1)]
2 +1

: = b̄2
πσ2

π [1−R2]+1. (B111)

We are looking for the conditions under which MSFEπ < MSFEy:

c̄2
π(1−R2)< b̄2

π(1−R2), (B112)
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Figure B1: E-Stability
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(a) Forward-Looking Rule
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(b) Contemporaneous Rule

Note: The figure for the forward-looking rule is drawn for r in the range [0.1 2], where each line corresponds
to a different r – the darker is the line, the larger is r. The figure for the contemporaneous rule is drawn
for r in the range [0.1 1]

denoting Γ̄ = b̄π
c̄π
. And the criterion is simply:

Γ̄2 > 1. (B113)

Variances and Covariance
In this section, we derive the variance and covariance of the original, non-standardized variables.
The adjustments necessary for standardization are mentioned in the text. The procedure is sim-
ilar to Adam (2005). With the actual law of motion as in (B87) and (B88) under different pol-
icy rules we derive the variances and covariance of output and inflation. Denote zt = (πt ,yt)

′ and

B =

(
b̄π c̄π
b̄y c̄y

)
, Ut = (ut ,gt)

′. Then the (B87) can be represented as:

zt = Bzt−1 +Ut , (B114)

where for the purposes of the variance and covariance calculation we have dropped the unimportant

constants. Denote r2 ≡ σ2
u

σ2
g

and Ω ≡ E(ug)2 = σ2
g

(
r2 +ω2 ω

ω 1

)
is the variance-covariance matrix

of the shocks. We take the variance of (B114) to get:

E = BE B′+Ω, (B115)

where E = E(zz′). Vectorizing matrix E :

vec(E ) = (B⊗B)vec(E )+ vec(Ω)

= (I −B⊗B)−1vec(Ω). (B116)
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To obtain the covariance with lagged values, we multiply both sides of (B114) by zt−1 and take
expectations to get:

Γ = BE , (B117)

where Γ = E(ztz′t−1) is the covariance matrix with the lagged values and

vec(Γ) = (I ⊗B)vec(E ). (B118)

Then the variances and covariances are as follows:

σyπ = vec(E )[2], (B119)

σ2
π = vec(E )[1], (B120)

σ2
y = vec(E )[4], (B121)

E(πtπt−1) = vec(Γ)[1], (B122)
E(πtyt−1) = vec(Γ)[3]. (B123)

Appendix C: Weights

Proof. Proposition 3.0.3. Considering (31) and (32) and using the fact that c̄π > 0 and b̄π ̸= 0:10

mπ > my :
κ

b̄2
π
(
1−R2

) c̄πσy − b̄πR
c̄π

<
κ

c̄2
π
(
1−R2

) b̄π − c̄πR
b̄π

,

:


c̄π−b̄π R

b̄π
< b̄π−c̄π R

c̄π
if b̄π > 0,

c̄π−b̄π R
b̄π

> b̄π−c̄π R
c̄π

if b̄π < 0,

:
(
c̄π − b̄πR

)
c̄π < b̄π

(
b̄π − c̄πR

)
,

: c̄2
π − c̄π b̄πR < b̄2

π − b̄π c̄πσyR,

: c̄2
π < b̄2

π ,

: Γ̄2 > 1.

Proof. Proposition 3.0.4. Rearranging (31)

:
κ

c̄2
π
(
1−R2

) b̄π − c̄πR
b̄π

< 1,

: κ <
b̄π c̄2

π
(
1−R2)

b̄π − c̄πR
=

(
1−R2) c̄2

π
1−R c̄π

b̄π

,

where in the second step we again use the fact that (28) implies |b̄π | > c̄π , which means that even
for b̄π < 0, b̄π−c̄π R

b̄π
> 0. R ∈ [−1,1], that is, the maximum of the expression −c̄πR, linear in R, is

c̄π < |b̄π |. As was shown in Appendix A.3, the condition for an inner solution is sufficient for the
shock to have a positive weight in the forecast.
10 With c̄π > 0, b̄π = 0 means violation of (28), hence with b̄π = 0 Mπ cannot be the equilibrium choice.
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Appendix D: Weight on Inflation

Figure D1: Model Selection under Sparse Weights, Mπ .

(a) Forward-Looking Rule (b) Contemporaneous Rule

m >0.5 m >0.000001 (0,0) MSFE >MSFE
y
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