
Two limited-memory optimization methods with minimum violation of the previous
quasi-Newton equations

Vlček, Jan
2020

Dostupný z http://www.nusl.cz/ntk/nusl-432144

Dı́lo je chráněno podle autorského zákona č. 121/2000 Sb.

Tento dokument byl stažen z Národnı́ho úložiště šedé literatury (NUŠL).

Datum staženı́: 27.09.2024

Dalšı́ dokumenty můžete najı́t prostřednictvı́m vyhledávacı́ho rozhranı́ nusl.cz .

http://www.nusl.cz/ntk/nusl-432144
http://www.nusl.cz
http://www.nusl.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Two limited-memory optimization
methods with minimum violation of
the previous quasi-Newton equations

Jan Vlčeka, Ladislav Lukšana, b

aInstitute of Computer Science of the Czech Academy of Sciences,

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic and

bTechnical University of Liberec, Hálkova 6, 461 17 Liberec, Czech Republic

Technical report No. V 1280

September 2020

Pod Vodárenskou věž́ı 2, 182 07 Prague 8 phone: +420 266 052 083, fax: +420 286 585 789,
e-mail:luksan@cs.cas.cz, vlcek@cs.cas.cz

Institute of Computer Science
Academy of Sciences of the Czech Republic

Two limited-memory optimization
methods with minimum violation of

the previous quasi-Newton equations1

Jan Vlčeka, Ladislav Lukšana, b

aInstitute of Computer Science of the Czech Academy of Sciences,

Pod Vodárenskou věž́ı 2, 182 07 Prague 8, Czech Republic and

bTechnical University of Liberec, Hálkova 6, 461 17 Liberec, Czech Republic

Technical report No. V 1280

September 2020

Abstract:

Limited-memory variable metric methods based on the well-known BFGS update are widely
used for large scale optimization. The block version of the BFGS update, derived by Schnabel
(1983), Hu and Storey (1991) and Vlček and Lukšan (2019), satisfies the quasi-Newton
equations with all used difference vectors and for quadratic objective functions gives the
best improvement of convergence in some sense, but the corresponding direction vectors
are not descent directions generally. To guarantee the descent property of direction vectors
and simultaneously violate the quasi-Newton equations as little as possible in some sense,
two methods based on the block BFGS update are proposed. They can be advantageously
combined with methods based on vector corrections for conjugacy (Vlček and Lukšan, 2015).
Global convergence of the proposed algorithm is established for convex and sufficiently smooth
functions. Numerical experiments demonstrate the efficiency of the new methods.

Keywords:
Unconstrained minimization, variable metric methods, limited-memory methods,
variationally derived methods, global convergence, numerical results

1This work was supported by the Institute of Computer Science of the CAS (RVO: 67985807).

1 Introduction

In this report we assume that the problem function f : RN → R is differentiable and
propose two new limited-memory variable metric (VM) or quasi-Newton (QN) methods
for large scale unconstrained optimization

min f(x) : x ∈ RN

which are based on a block version of the widely used BFGS update, see below.
The VM methods [7, 14] are iterative. They start with an initial point x0 ∈ RN and

generate iterations xk+1 ∈ RN by the process xk+1 = xk + sk, sk = tkdk, k ≥ 0, where dk

is the direction vector, tk > 0 the stepsize, chosen regularly in such a way that

f(x+)− f(x) ≤ ε1 t gTd, gT
+d ≥ ε2 gTd (1.1)

(the Wolfe line search conditions [17]), 0<ε1 <1/2, ε1 <ε2 < 1 and gk =∇f(xk). Usually

dk = −Hkgk with a symmetric positive VM matrix Hk
∆
= B−1

k ; typically H0 is a multiple
of I and Hk+1 is obtained from Hk to satisfy the QN (secant) equation (condition)

Hk+1yk = sk, (1.2)

with the difference vectors sk, yk = gk+1 − gk. Among VM methods, the BFGS method
[7, 14, 17] belongs to the most efficient ones and can be easily modified for large scale
optimization; the L-BFGS [10, 16] and BNS [3] methods represent its well-known limited-
memory adaptations. We refer to Section 2 for a brief description of these methods.

To incorporate more past information to the update formula, the block version of the
BFGS update was derived in [18] for symmetric positive definite VM matrices, using a
variational approach, in [8] for quadratic functions, using corrections for the exact line
search, and recently in [21] for general functions, using a block variant of the approach in
[4]. This update satisfies the QN equations with all used difference vectors and brings the
best improvement of convergence in some sense [20, 21] for quadratic objective functions.
Nevertheless, it does not guarantee that the corresponding direction vectors are descent
directions for general functions.

Using the block BFGS update in a generalized form [21], in Section 3 we derive
two new updates variationally with direction vectors that satisfy the descent property.
Naturally, some QN equations with the used difference vectors can be violated. To utilize
the advantageous properties of the block BFGS updates, we look for a solution to the
following constrained optimization problem: to find such an update which satisfies the
QN equations with several latest difference vectors and violates the QN equations from
previous iterations as little as possible in some sense. In Section 3.1 we show that this
problem can be converted equivalently to a problem without equality constraints and
with a smaller number of variables. We also derive an expression for the solution of this
simpler problem. Our first new update is based on this expression.

Besides, in such optimization problems we can use further constraints, derived from
properties of the block BNS method [21]. Then the resultant second new update has a
simple implementation and some interesting properties, see Section 3.2.

Our experiments indicate that the efficiency of the methods based on these two up-
dates is similar. Moreover, it can be significantly improved by combination with methods
based on vector corrections for conjugacy which use previous difference vectors and store

1

the corrected difference vectors [19, 20, 22]. A main reason for this improvement proba-
bly consists in the fact that these vectors commonly contain cumulative information from
previous iterations.

In Section 4 we combine these corrections with the corrections that use the subsequent
difference vectors (see Section 4.1) to satisfy the QN equations with both the corrected
and original, uncorrected latest difference vectors, see Section 4.2. For our new updates,
these special corrections appear to give slightly better numerical results than the others.

The application to the limited-memory VM methods and the corresponding algorithm
are described in Section 5. Global convergence of the algorithm is established in Section 6
and numerical results are reported in Section 7.

To simplify notation we frequently omit the index k and replace the index k + 1 by
the symbol + and the index k − 1 by the symbol −.

We will denote by ‖ · ‖F the Frobenius matrix norm, by ‖ · ‖ the spectral matrix norm
and by | · | the size of both scalars and vectors (the Euclidean vector norm).

2 The L-BFGS and BNS methods

In this section we briefly describe the limited-memory VM methods L-BFGS [10, 16],
implemented as subroutine PLIS in [11], and BNS [3]. These methods are based on the
BFGS update formula, mentioned in Section 1, which preserves the positive definiteness
of H and can be written in the following quasi-product form

H+ = (1/b)ssT +
(
I − (1/b)syT

)
H

(
I − (1/b)ysT

)
, b = sTy (2.1)

(b > 0 for g 6= 0 by (1.1)). To modify the BFGS method for large scale optimization, we
choose HI

k ∈RN×N in every iteration (usually HI
k = ζkI, ζk > 0) and recurrently update

HI
k (without forming an approximation of the inverse Hessian matrix explicitly) by the

BFGS formula, using m pairs of vectors (sk−m̃, yk−m̃), . . . , (sk, yk) successively, where

m̃ = min[k, m̂−1], m = m̃ + 1, k ≥ 0 (2.2)

and m̂>1 is a given parameter. We use the BNS update to guarantee global convergence
of Algorithm5.1 if some conditions for our new methods are not satisfied, see Section 5.
Instead of the famous compact form [3], we use it in the form (also given in [3])

H+ = SR−TDR−1ST +
(
I − SR−T Y T

)
HI

(
I − Y R−1ST

)
, (2.3)

where Sk = [sk−m̃, . . . , sk], Yk = [yk−m̃, . . . , yk], Dk =diag[bk−m̃, . . . , bk], (Rk)i,j =(ST
k Yk)i,j

for i≤ j, (Rk)i,j = 0 otherwise (an upper triangular matrix), k≥ 0. We can see that for
HI = ζI the direction vector −H+g+ (and subsequently an auxiliary vector Y T H+g+, see
Section 5) can be calculated efficiently (without computing of H+ explicitly) by

−H+g+ = −ζg+ − S
[
R−T

(
(D+ζY T Y)R−1STg+−ζY Tg+

)]
+ Y

[
ζR−1STg+

]
, (2.4)

Y TH+g+ = ζY Tg++Y TS
[
R−T

(
(D+ζY T Y)R−1STg+−ζY Tg+

)]
−Y TY

[
ζR−1STg+

]
, (2.5)

where in the square brackets we multiply by low-order matrices.

2

3 Two variationally derived VM updates

The basic variant of the block BFGS update derived in [21] for general functions is

H+ = S A−1ST +
(
I − SA−T Y T

)
HI

(
I − Y A−1ST

)
, A = ST Y, (3.1)

where HI ∈ RN×N is symmetric and A ∈Rm×m arbitrary nonsingular. The matrix H+ is
the nearest matrix to HI in some sense that satisfies the QN equation H+Y = S, however
the direction vector d+ = −H+g+ is not a descent direction generally.

Replacing S by SΘ, Θ∈Rm×m nonsingular, in the same way as (3.1) we can derive
the generalized form

H+ = S XST +
(
I−SA−T Y T

)
HI

(
I−Y A−1ST

)
, X = ΘA−1, (3.2)

which satisfies the violated (for Θ 6= I) QN equations H+Y = S(XA) = SΘ. Note that
the infinitely many times repeated BNS update, investigated in [22], has the same form
(with a special symmetric positive definite matrix X).

To express the violation of the QN equations H+Y = S for H+ nonsingular, we will
use the matrix

∆ = (H+Y − S)T B+(H+Y − S) = (B+S −Y)T H+(B+S −Y), B+ = H−1
+ . (3.3)

Obviously, for H+ symmetric positive definite we can write Tr ∆ = ||B1/2
+ (H+Y − S)||2F .

The following lemma gives another expression of ∆, which uses only low-order matrices.

Lemma 3.1. Let H+ be given by (3.2) with X symmetric and XA nonsingular. Then

∆ = AT XA + X−1 − A− AT . (3.4)

Proof. Since (3.2) implies H+Y = S(XA) and Y (XA)−1 = B+S, the desired conclusion
follows from ∆ = Y T H+Y + ST B+S − A− AT . 2

Besides (1.2), more latest QN equations can be satisfied, if some lower-right-corner
principal submatrix of A is symmetric (see Lemmas 3.2 and 3.4), which can be achieved
e.g. by means of vector corrections for conjugacy (see Section 4).

According to our intention, see Section 1, first we will look for such a symmetric
positive definite matrix X, which minimizes Tr ∆ in some sense, see below, and for which
update (3.2) satisfies the QN equations with several latest difference vectors.

3.1 The first new update

To derive our first update of the form (3.2), we will solve the problem

min
X∈Sm

Tr ∆ s.t. H+Y(2) = S(2), (3.5)

where we split S, Y in such a way that S = [S(1), S(2)], Y = [Y(1), Y(2)], S(2), Y(2) ∈ RN×µ,
0<µ<m, and by Si we denote the set of symmetric positive definite matrices of order i.

The following lemma and theorem show that the QN equations in (3.5) can be replaced
by some conditions for structure of X and that it will be sufficient to look for some
submatrix of X, which minimizes the trace of some submatrix of ∆.

3

Lemma 3.2. Let S = [S(1), S(2)], Y = [Y(1), Y(2)], S(2), Y(2) ∈ RN×µ, 0 < µ < m, let

A =

[
A11 A12

A21 A22

]
=

[
ST

(1)Y(1) ST
(1)Y(2)

ST
(2)Y(1) ST

(2)Y(2)

]
(3.6)

be nonsingular and a symmetric matrix X ∈ Rm×m be partitioned in the same way. Let
A22 be symmetric nonsingular and H+ be given by (3.2). Then H+Y(2) =S(2) if and only if

X12 = XT
21 = −X11A12A

−1
22 , X22 = A−1

22 + A−1
22 AT

12X11A12A
−1
22 . (3.7)

Proof. In view of (3.6) we have

XA =

[
X11A11 + X12A21 X11A12 + X12A22

XT
12A11 + X22A21 XT

12A12 + X22A22

]
∆
=

[
(XA)11 (XA)12

(XA)21 (XA)22

]
, (3.8)

thus (3.7) is equivalent to (XA)12 = 0, (XA)22 = I and further to H+Y(2) = S(2) by
H+Y=S(XA) and linear independence of columns of S, which follows from det A 6= 0. 2

Theorem 3.1. Let the assumptions of Lemma 3.2 be satisfied, C = A11 − A12A
−1
22 A21,

X11 be nonsingular and (3.7) hold. Then X and C are nonsingular, H+Y(2) = S(2) and

XA =

[
X11C 0

A−1
22 (A21 − AT

12X11C) I

]
, X−1 =

[
X−1

11 + A12A
−1
22 AT

12 A12

AT
12 A22

]
, (3.9)

∆ =

[
CT X11C + X−1

11 − C − CT + (A12 − AT
21)A

−1
22 (AT

12 − A21) 0
0 0

]
. (3.10)

Moreover, if A22 ∈ Sµ then we get X ∈ Sm if and only if X11 ∈ Sm−µ.

Proof. Theorem 1.4.2 in [6] yields det A= det C. det A22, therefore det C 6= 0. As in the
proof of Lemma 3.2 we get (3.8), H+Y(2) =S(2), (XA)12 = 0 and (XA)22 = I. Since

X22 −X21X
−1
11 X12 = A−1

22 + A−1
22 AT

12X11A12A
−1
22 − A−1

22 AT
12X11A12A

−1
22 = A−1

22

by (3.7), we similarly obtain det X = det A−1
22 . det X11, thus X is nonsingular and all

assumptions of Lemma 3.1 are satisfied. From (3.8) and (3.7) we derive

(XA)11 = X11(A11 − A12A
−1
22 A21) = X11C,

(XA)21 = −A−1
22 AT

12X11A11 + (A−1
22 + A−1

22 AT
12X11A12A

−1
22)A21

= A−1
22 (A21 − AT

12X11(A11 − A12A
−1
22 A21)) .

This gives the first relation in (3.9) and further

AT XA− AT = AT (XA− I) =

[
AT

11 AT
21

AT
12 A22

] [
X11C − I 0

A−1
22 (A21 − AT

12X11C) 0

]
,

which implies

(AT XA−AT)12 = 0, (AT XA−AT)22 = 0, (AT XA−AT)21 = A21 − AT
12, (3.11)

(AT XA−AT)11 = AT
11X11C − AT

11 + AT
21A

−1
22 A21 − AT

21A
−1
22 AT

12X11C

= CT X11C − AT
11 + AT

21A
−1
22 A21. (3.12)

4

Similarly, we can express

X−1− A = A((XA)−1− I) =

[
A11 A12

A21 A22

] [
C−1X−1

11 − I 0
−A−1

22 (A21 − AT
12X11C) C−1X−1

11 0

]

by the first relation in (3.9), which yields

(X−1 − A)12 = 0, (X−1 − A)22 = 0, (X−1 − A)21 = −A21 + AT
12, (3.13)

(X−1 − A)11 = A11C
−1X−1

11 − A11 − A12A
−1
22 A21C

−1X−1
11 + A12A

−1
22 AT

12

= C(C−1X−1
11)− A11 + A12A

−1
22 AT

12, (3.14)

i.e. the second relation in (3.9). Considering that

(A12−AT
21)A

−1
22 (AT

12−A21) = A12A
−1
22 AT

12 − A12A
−1
22 A21 − AT

21A
−1
22 AT

12 + AT
21A

−1
22 A21

= A12A
−1
22 AT

12 + AT
21A

−1
22 A21 − A11 − AT

11 + C + CT ,

we obtain (3.10) from Lemma 3.1, (3.12) and (3.14). Moreover, for A22 ∈ Sµ we have
X11 ∈ Sm−µ if and only if X ∈ Sm by the second relation in (3.9), since the Schur
complement of A22 in X−1 is X−1

11 . 2

For A22∈Sµ and A nonsingular, by Theorem3.1 we can equivalently solve the problem

min
X11∈Sm−µ

Tr (CT X11C + X−1
11 − C − CT) (3.15)

instead of (3.5). A solution to this problem is given by the following theorem.

Theorem 3.2. Let C be nonsingular. Then X11 = (CCT)−1/2 is the unique solution to
(3.15) and for this X11, the matrices X−1

11 , CTX11C are similar.

Proof. For X11 =(CCT)−1/2, the matrices X−1
11 , CTX11C = C−1(CCT)X11C = C−1X−1

11 C
are similar. Let J=(CCT)1/2. Obviously, J ∈Sm−µ. Since the trace of a product of two
square matrices is independent of the order of multiplication, for any X11∈ Sm−µ we have

Tr (CTX11C + X−1
11) = Tr (X11CCT + X−1

11) = Tr
(
X

1/2
11 (J2 + X−2

11)X
1/2
11

)

= Tr
(
X

1/2
11 (J2 − JX−1

11 −X−1
11 J + X−2

11)X
1/2
11 + 2J

)

= Tr
(
X

1/2
11

(
J −X−1

11

)2
X

1/2
11 + 2J

)
,

which completes the proof by X
1/2
11 ∈ Sm−µ and symmetry of J −X−1

11 . 2

Note that for X11 = (CCT)−1/2, the matrix X11C is orthogonal, as we can see from

(X11C)−1 = C−1X−2
11 X11 = C−1(CCT)X11 = (X11C)T .

3.2 The second new update

Our second new update of the form (3.2) utilizes some of properties of the block BNS
update [21] to minimize not only Tr ∆, but also ‖∆‖F . We consider the update

HR
+ = SRXRST

R + (I − SRA−T
R Y T

R)HI(I − YRA−1
R ST

R), (3.16)

5

where SR, YR ∈ RN×m−1 are the matrices S, Y without the first column, AR = ST
RYR

is nonsingular and XR is symmetric. The block BNS update of HI , where one of the
diagonal blocks is ST

RYR (of order m− 1), can have the form

HBBNS
+ = SRXRST

R + (I − SRA−T
R Y T

R)HA(I − YRA−1
R ST

R)

with some suitable HA ∈ RN×N (see Lemma 6 in [21]). The matrix HBBNS
+ has the

property HBBNS
+ YR = SR(XRAR) = HR

+YR. By analogy with this, we will look for
X ∈ Sm which minimizes both Tr ∆ and ‖∆‖F subject to H+YR = HR

+YR. For such X
we will show that XA∈Tm, where Ti is the set of lower triangular matrices of order i.

Theorem 3.3. Let HI ∈ RN×N be a symmetric positive definite matrix, m > 1 and
SR, YR∈RN×m−1 the matrices S, Y without the first column. Let AR =ST

RYR be nonsin-
gular, let some XR∈Sm−1 satisfying XRAR∈Tm−1 be firmly given, HR

+ be given by (3.16)
and H+ by (3.2) with A nonsingular and X symmetric. Then for

A =

[
α uT

v AR

]
, X =

[
ξ χT

χ XP

]
, p =A−T

R u, c = α− pTv, (3.17)

α, ξ∈R, we have c 6= 0. Further for both i = 1 and i = 2, the unique solution to

min
X∈Sm

ϕi(∆) s.t. H+YR = HR
+YR, ϕ1(∆) = Tr ∆, ϕ2(∆) = ‖∆‖F , (3.18)

satisfies XA ∈ Tm and is given by the choice ξ = 1/|c|, χ = −ξp and XP = XR + ξppT.

Proof. Since det A= (α− uT A−1
R v) det AR = c det AR, we get c 6= 0. Further,

XA =

[
αξ + χT v ξuT + χTAR

αχ + XP v χuT + XP AR

]
(3.19)

by (3.17). The terms H+YR, HR
+YR in (3.18) can be equivalently rewritten as

H+YR = H+Y

[
0T

I

]
= S(XA)

[
0T

I

]
, HR

+YR = SR(XRAR) = S

[
0T

XRAR

]
.

By this, (3.19) and linear independence of columns of S (which follows from det A 6= 0),
the equality H+YR = HR

+YR is equivalent to

ξuT + χTAR = 0T , χuT + XP AR = XRAR . (3.20)

For X∈ Sm, we obviously have H+∈ SN and ξ > 0 and (3.20) is equivalent to

χ = −ξp, XP = XR + ξppT .

In view of this, we can rewrite the first column of XA in (3.19) in the following way:

αξ + χT v = ξc, αχ + XP v = −αξp + XR v + ξ(pT v)p = XRv − ξcp
∆
= z.

By this and (3.19) - (3.20) we obtain

XA =

[
ξc 0T

z XRAR

]
, (XA)−1 =

[
1/(ξc) 0T

−A−1
R X−1

R z/(ξc) A−1
R X−1

R

]
. (3.21)

6

In view of Lemma 3.1, (3.21) and X−1 = A(XA)−1 we can write ∆ in the form

∆ =
[

α vT

u AT
R

][
ξc 0T

z XRAR

]
+

[
α uT

v AR

][
1/(ξc) 0T

−A−1
R X−1

R z/(ξc) A−1
R X−1

R

]
− A− AT

=

[
%− 2α vT XRAR + uT A−1

R X−1
R − uT − vT

AT
RXRv + X−1

R A−T
R u− u− v AT

RXRAR + X−1
R −AR −AT

R

]
,

where

% =
[
α, vT

]
.
[

ξc
z

]
+

[
α, uT

]
.
[

1/(ξc)
−A−1

R X−1
R z/(ξc)

]

= α(ξc) + vT z + α/(ξc)− uT A−1
R X−1

R z/(ξc)

= α
(
ξc + 1/(ξc)

)
+

(
vT − pT X−1

R /(ξc)
)
(XRv − ξcp)

= c
(
ξc + 1/(ξc)

)
+ vT XR v + pT X−1

R p

by p=A−T
R u, z=XR v− ξcp and c= α−pT v. Obviously, we get minimum % for ξ=1/|c|.

Since all entries of ∆ except for %− 2α are independent of ξ and %− 2α ≥ 0 by H+∈ SN

and (3.3), solutions to both problems (3.18) are the same with X ∈ Sm by (3.17), ξ > 0
and XP − χχT/ξ = XR ∈ Sm−1. Finally, XA ∈ Tm by (3.21) and XRAR ∈ Tm−1. 2

To define our second new update (3.2) for m ≥ 2, we start with m = 2 and XR = A−1
R

symmetric positive definite of unit order, which corresponds to the BFGS update (2.1).
Then we apply Theorem 3.3 iteratively, substituting A,X from the previous iteration for
AR, XR. We use this update only if all c > 0 (otherwise the resultant VM method appears
to be inefficient). Then the final matrix XA is obviously lower triangular with unit
diagonal entries, thus the QN equation H+y = s is satisfied by H+Y = S(XA); additional
QN equations can be satisfied similarly as for the first new update, see Lemma 3.4.

The following lemma shows that such a matrix X, determined uniquely by the re-
peated application of Theorem 3.3, can also be constructed in a different way.

Lemma 3.3. Let X ∈ Sm and A ∈ Rm×m be nonsingular with the factorization A = UL,
where U is upper triangular, L lower triangular and U,L have the same main diagonals.
Then XA is lower triangular with unit diagonal entries if and only if X = U−T U−1.

Proof. If X = U−T U−1, the matrix XA = U−T U−1UL = U−T L is obviously lower
triangular and has unit diagonal entries in view of the assumption that U,L have the
same main diagonals.

Let X ∈ Sm and XA
∆
= K is lower triangular with unit diagonal entries. Writing

X = RT
XRX with RX upper triangular, we have K = RT

XRXUL. This yields

RXU = R−T
X KL−1 ∆

= E, (3.22)

i.e. the upper triangular matrix RXU is equal to the lower triangular matrix R−T
X KL−1.

Thus E is a diagonal matrix, RX = EU−1 and (3.22) implies E = (EU−1)−TKL−1 =
E−T UTKL−1, or E2 = UTKL−1. Similarly as above we deduce that this diagonal matrix
has unit diagonal entries, i.e. E2 = I and X = RT

XRX = (U−TE)(EU−1) = U−T U−1. 2

The following lemma shows that QN equations H+Y(2) = S(2) can be satisfied under
similar conditions as for the first new update.

7

Lemma 3.4. Let the assumptions of Lemmas 3.2 and 3.3 be satisfied and X = U−T U−1.
Then H+Y(2) = S(2).

Proof. In view of Lemma 3.2 it suffices to prove (3.7). Suppose that

U =

[
U11 U12

0 U22

]
, L =

[
L11 0
L21 L22

]
(3.23)

with U22, L22 ∈ Rµ×µ. Since A22 is symmetric nonsingular, from A = UL and (3.23) we
get first A22 = U22L22 = LT

22U
T
22. Thus the lower triangular matrix L22U

−T
22 is equal to

the upper triangular matrix U−1
22 LT

22, where U22, L22 have the same main diagonals. This
obviously yields L22U

−T
22 = I, i.e. L22 = UT

22.
Further, A = UL implies A12 = U12L22, or U12 = A12L

−1
22 , thus (3.23) gives

U−1 =

[
U−1

11 −U−1
11 A12A

−1
22

0 U−1
22

]
, U−T =

[
U−T

11 0
−A−1

22 AT
12U

−T
11 U−T

22

]
(3.24)

by L−1
22 U−1

22 = A−1
22 . From X = U−T U−1 we obtain X11 = U−T

11 U−1
11 and subsequently

X =

[
X11 −X11A12A

−1
22

−A−1
22 AT

12X11 U−T
22 U−1

22 + A−1
22 AT

12X11A12A
−1
22

]
, (3.25)

thus (3.7) is satisfied by U−T
22 U−1

22 = L−1
22 U−1

22 = A−1
22 . 2

The second new update has the following property, relevant namely in connection with
the corrections for conjugacy which use subsequent difference vectors, see Section 4.1.

Lemma 3.5. Let the assumptions of Lemma 3.3 be satisfied and X = U−T U−1. Then
the matrix H+ given by (3.2) is invariant under the transformation S → S TS, Y → Y TY

for arbitrary lower triangular matrices TS, TY ∈ Rm×m with the same main diagonals.

Proof. Let S̃ =S TS, Ỹ = Y TY , Ã= S̃T Ỹ. Then Ã= T T
SATY = Ũ L̃, where Ũ = T T

S U and
L̃ = LTY satisfy the same assumptions as U,L in Lemma 3.3. Therefore corresponding
X̃, determined uniquely by X̃ = Ũ−T Ũ−1 = T−1

S XT−T
S , see comments before Lemma 3.3,

satisfies S̃X̃S̃T = SXST. Further, Ỹ Ã−1S̃T = Y A−1ST, which completes the proof. 2

4 Combination with vector corrections for conjugacy

It was shown in [19, 20, 22] that the performance of limited-memory VM methods can
often be improved by corrections for conjugacy which use previous difference vectors to
correct the vectors s, y. These corrections can be written in the form s → ŝ = s + SCσ,
y → ŷ = y +YCη, where SC , YC are matrices with some selected columns of S, Y without
s, y. The vectors σ, η are chosen so that ŷTSC = ŝT YC = 0, with potential modifications
if b̂ = ŝTŷ is negative or too small. As we mentioned in Section 1, corresponding ŝ, ŷ
can be stored and used in next iterations instead of original s, y. However, this usually
requires additional arithmetic operations.

Note that for quadratic functions, [SC , s] = S, [YC , y] = Y and the BFGS udate,
these corrections represent the best improvement of convergence in some sense under

8

some conditions [20] and that for the theory in this section it is not significant, whether
columns of SC , YC were corrected in previous iterations.

Although for one correction vector the improvement of numerical results can often
be substantial [19], for our two new methods the benefit of additional correction vectors
appears to be questionable. Therefore in this report we will consider only one correction
vector. For this type of corrections and SC = [s−], YC = [y−], we can write

ŝ = s− sTy−
b−

s−=
(
I − 1

b−
s−yT

−
)
s, ŷ = y − sT

−y

b−
y−=

(
I − 1

b−
y−sT

−
)
y, (4.1)

which satisfy (conjugacy of ŝ, s− with respect to B and B+ for H+ŷ = ŝ, Hy− = s−)

ŝTy− = sT
−ŷ = 0. (4.2)

These corrections appear to improve efficiency only if ŝTŷ/b is positive and not too small
and if sTy−, sT

−y are not too different.
If we replace s, y by ŝ, ŷ and construct some new update with the corrections (4.1),

we get H+[y−, ŷ] = [s−, ŝ] by ŝT y− = ŷTs− = 0 and Theorem 3.1 for the first update or
by Lemma 3.4 for the second update, both with S(2) = [s−, ŝ] and Y(2) = [y−, ŷ]. Thus

H+y − s = H+ŷ + (sT
−y/b−)s− − s =

(
(sT
−y − sTy−)/b−

)
s−. (4.3)

To satisfy the QN equations with both the corrected and uncorrected (original) latest
difference vectors, in Section 4.2 we combine these corrections with the following type of
corrections, which use subsequent difference vectors to correct previous columns of S, Y .

4.1 Corrections for conjugacy which use subsequent difference vectors

Corrections S → S TS, Y → Y TY , where TS, TY ∈ Rm×m are lower triangular matrices
with the same main diagonals, represent another type of corrections for conjugacy. They
are implicit for our second new update, which is invariant under these transformations,
see Lemma 3.5. If the factorization A = UL exists with U,L satisfying the assumptions
of Lemma 3.3, we can e.g. simply get (STS)T (Y TY) = I setting TS = U−T , TY = L−1.

To correct s−, y− in this way, we can use the following formulas

s̃−=
(
I − (1/b)syT

)
s−, ỹ−=

(
I − (1/b)ysT

)
y−, (4.4)

analogous to (4.1), for s̃T
−ỹ− positive and not too small (note that s̃T

−ỹ− = ŝTŷ (b−/b)).
These vectors satisfy

s̃T
−y = sTỹ− = 0 . (4.5)

The second new update can also be understood as a precorrected BNS update:

Lemma 4.1. Let the assumptions of Lemma 3.3 be satisfied and TY = L−1DU , where DU

is a diagonal matrix with the same main diagonal as U (or L). Then the BFGS update
(2.3) with Y TY instead of Y represents the update (3.2) with X = U−T U−1.

Proof. Let A = UL, where U,L have the same main diagonals, and Ỹ = Y TY . Then
ST Ỹ = A(L−1DU) = UDU , which is an upper triangular matrix with the main diago-
nal D2

U . Substituting UDU , Ỹ = Y L−1DU , D2
U for R, Y,D into (2.3), we get (3.2) with

X = U−T U−1 by

(UDU)−TD2
U(UDU)−1 = U−T U−1, (UDU)−T (Y L−1DU)T = A−T Y T . 2

9

4.2 Corrections which use previous and subsequent difference vectors

In this section we show, how the both of the QN equations H+ŷ = ŝ and H+y = s can
be satisfied, using modified corrections (4.1) and (4.4). In this connection, from now on
the vectors ŝ, ŷ, s̃−, ỹ− will have a different meaning than up to now.

For the new type of corrections, which correct both s, y → ŝ, ŷ and s−, y− → s̃−, ỹ−,
we replace the (conjugacy) properties (4.2) , (4.5)) by ŝTỹ− = s̃T

−ŷ = 0. Considering
advantageous properties of the corrections (4.1), see [19, 20], we want to preserve them
partially. By analogy with the BFGS update (see comments after Lemma 2.2 in [19]),
we consider the satisfaction of ŝTy− = 0 for the new corrected vectors ŝ, ŷ to be more
important than sT

−ŷ = 0, which is confirmed by our numerical experiments.
Therefore we will not correct y−, define ŝ, ŷ by modified (4.1) with s− replaced by a

corrected vector s̃− and simultaneously define s̃− by (4.4) with s, y replaced by ŝ, ŷ:

ŝ =
(
I−(1/s̃T

−y−)s̃−yT
−

)
s, ŷ =

(
I−(1/s̃T

−y−)y−s̃T
−

)
y, s̃−=

(
I−(1/ŝTŷ)ŝŷT

)
s− , (4.6)

where s̃T
−y− = b− by ŝT y− = 0. Obviously, these relations do not determine ŝ, ŷ, s̃−

uniquely. Similarly as (4.3) we can obtain H+y−s =
(
(s̃T
−y−sTy−)/b−

)
s̃−. Thus to have

H+y = s, the transformation s− → s̃− should satisfy the symmetry property s̃T
−y = sTy−

(it can be proved that then ŝ, ŷ, s̃−, if well defined, are determined by (4.6) uniquely).
The following theorem gives all corrected quantities, describes their properties and

shows that all relations (4.6) are satisfied. Note that there is no need to compute s̃−
explicitly; for the true handling of corrected quantities, see Section 5.

Theorem 4.1. Let α = sTy−/b−, b̄ = b − α sT
−y 6= 0, ŝ = (s − αs−)(b − α2b−)/b̄, ŷ =

y − α y−, b̂ = ŝT ŷ 6= 0, s̃−= P Ts−, P = I − (1/ŝTŷ) ŷŝT , γ = sT
−y − sTy−. Then

(a) ŝTy−= s̃T
−ŷ = 0, b− α2b−= b̂, s̃T

−y− = b−, s̃T
−y = sTy−,

(b) ŷ =
(
I − (1/b−)y−s̃T

−
)
y, ŝ = s− αs̃− =

(
I − (1/b−)s̃−yT

−
)
s.

Moreover, let H+ be the first or second new update of the form (3.2) with A nonsingular
and s, y, s− replaced by ŝ, ŷ, s̃−. If X and H+ are symmetric positive definite, then

(c) H+ŷ = ŝ, H+y− = s̃−, b̂ > 0, H+y = s.

Proof. (a) We get ŝTy−= 0 in view of α = sTy−/b−, further s̃T
−ŷ = sT

−P ŷ = 0 and

b̂ = ŝTŷ = ŝT(y − α y−) = ŝTy = (b− α sT
−y)(b− α2b−)/b̄ = b− α2b− . (4.7)

Using again ŝTy−= 0, we obtain s̃T
−y−= sT

−Py−= sT
−y−= b−, which yields

s− − s̃− = s− − P Ts− = s− −
(
I − (1/b̂)ŝŷT

)
s− = (sT

−ŷ/b̂)ŝ = (γ/b̂)ŝ . (4.8)

In view of ŝTy = b̂, see (4.7), from (4.8) we get s̃T
−y = sT

−y − γ = sTy−= αb−.

(b) The last relation implies
(
I − (1/b−)y−s̃T

−
)
y = y − αy−= ŷ. In view of (4.8) the

definition of ŝ yields

s− αs− =
b̄

b̂
ŝ =

b− α2b− − α(sT
−y − αb−)

b̂
ŝ = ŝ− α

γ

b̂
ŝ = ŝ− α(s− − s̃−), (4.9)

10

i.e. s = ŝ + αs̃−, therefore ŝ = s− αs̃− = s− (sTy−/b−)s̃− =
(
I − (1/b−)s̃−yT

−
)
s.

(c) From ŝTy− = s̃T
−ŷ = 0 and s̃T

−y− = b−, see (a), we get H+[y−, ŷ] = [s̃−, ŝ] by
Theorem 3.1 for the first update or by Lemma 3.4 for the second update, both with
S(2) = [s̃−, ŝ], Y(2) = [y−, ŷ]. This yields b̂ = ŝTŷ = ŷTH+ŷ > 0 by assumption and further

s− αs̃− = ŝ = H+ŷ = H+(y − αy−) = H+y − αs̃−
by (b), i.e. H+y = s. 2

5 Implementation

In this section we assume that HI = ζI, ζ = sTy/yTy > 0, and implement two new
VM methods, applying the two new updates (Sections 3.1, 3.2) to difference vectors
with possible corrections described in Theorem 4.1. To improve efficiency, the corrections
s→ ŝ,y→ ŷ are performed before updating and ŝ, ŷ are stored and used instead of s, y. To
indicate that all columns of S, Y except for the latest (i.e. s, y) can be possibly corrected
in previous iterations, we will write ŝi, ŷi (and subsequently b̂i), i<k. To unify notation,
after possible corrections (see Step 4 of Algorithm 5.1) we will often write ŝi, ŷi, b̂i instead
of si, yi, bi also for i = k. Nevertheless, if we want to stress that we mean the original,
uncorrected vectors, we will write s̊i, ẙi, b̊i for any i.

The vector s̃− is used only with the first new update and only together with corrections

of s, y and need not be computed. It suffices to consider the matrix ST
∆
= S̃ instead of

S (and subsequently Ã = S̃T Y = T TA, C̃, X̃ instead of A,C,X), where T is the (low-
order) identity matrix, except for Tm,m−1 = −γ/b̂ in view of s̃− = s−− (γ/b̂)ŝ, see (4.8);
obviously det T = 1.

The matrix H+ modified in this way can be written in the following form

H+ = S̃ X̃S̃T + ζ
(
I−S̃Ã−T Y T

) (
I−Y Ã−1S̃T

)

= S X̄ST + ζ
(
I−SA−T Y T

) (
I−Y A−1ST

)
, X̄ = TX̃T T , (5.1)

i.e. in the form (3.2) with HI= ζI and X replaced by X̄. Setting T = I and X̄ = X
in case that we do not correct ŝ−→ s̃−, we will use the matrices S̃, Ã, C̃, X̃ instead of
S, A, C, X and the update (5.1) instead of (3.2) for the both new updates. Note that the
matrix Ã22 is diagonal by Theorem 4.1(a).

In view of (5.1), the direction vector −H+g+ and an auxiliary vector Y TH+g+ (see
comments to Procedure 5.2 below) can be calculated efficiently by

−H+g+ = −ζg+−S
[(

X̄+ ζA−T Y T YA−1
)
STg+− ζA−T Y Tg+

]
+Y

[
ζA−1STg+

]
, (5.2)

Y TH+g+ = ζY Tg++Y TS
[(

X̄+ζA−T Y T YA−1
)
STg+− ζA−T Y Tg+

]
−Y TY

[
ζA−1STg+

]
. (5.3)

For the second new update with X̄ = X = U−T U−1, we use (5.2) and (5.3) in the form

−H+g+ = −ζg+−S
[
U−T

(
(I+ ζL−T Y T Y L−1)q − ζL−T Y Tg+

)]
+Y

[
ζL−1q

]
, (5.4)

Y TH+g+ = ζY Tg++Y TS
[
U−T

(
(I+ζL−T Y T Y L−1)q − ζL−T Y Tg+

)]
−Y TY

[
ζL−1q

]
, (5.5)

where q = U−1STg+.

11

All corrections described in Section 4 and also both new updates appear to be more
efficient than the L-BFGS (or BNS) method only if A is sufficiently close to a symmetric
matrix. Denoting A= [aij]

m
i,j=1, we use the values

∆̄ =
∑

1≤i<j≤m

(aij−aji)
2/(aiiajj), δ̄ = (ŝT

−y−sTŷ−)2/(bb̂−) (5.6)

as measures of the deviation. Similarly as for the BFGS method with corrected vectors
(to have VM matrices symmetric positive definite, see e.g. [17]), we require b̂>0 and b̄>0
(we can readily verify that b̄ corresponds to ŝTŷ for the corrections (4.1)). Besides, as in
[22] we can deduce that too small b̄, b̂ can deteriorate stability. Thus we do not correct
s, y if δ̄ >δ1 or b̄<δ2b (all δi∈ (0, 1)); this implies b̂>0 by Lemma 6.3. Due to our proof
of global convergence, we also do not correct if max[|ŝ−|/|̊s−|, |ŷ−|/|̊y−|] > θ, θ>1.

Due to b̄= b̂− αγ, see (4.9), i.e. 1−b̄/b̂=αγ/b̂, and |s̃−−ŝ−|/|ŝ|= |γ|/b̂, see (4.8), in
case of the first new update we also do not correct if (αγ/b̂)2 > δ3 or (γ/b̂)2 > δ4 (s̃− is
too different from ŝ−). Similarly for the second new update, if (αγ/b̂)2 >δ5.

We use both new updates only for ∆̄≤ δ6. For the first new update, if all diagonal
entries of Ã22 are greater than εD Tr A, εD ∈ (0, 1), we calculate C̃, using Theorem 3.1
with S̃, Ã, C̃ instead of S,A, C (recall that all bi > 0 for gi 6= 0 by (1.1)). Then, if all
diagonal entries of C̃ are greater than δ7 Tr A and all eigenvalues of C̃C̃T divided by
1+‖Ã−1

22 Ã21‖2
F (to guarantee global convergence, see Section 6) are greater than or equal

to εE Tr A, εE ∈ (0, 1), we calculate X̃, using Theorem 3.2 and (3.7) with S̃, Ã, C̃, X̃
instead of S,A, C, X. For the second new update, we factorize A = UL, where U,L have
the same main diagonals, and calculate X = U−T U−1, see Lemma 3.3. If some condition
is not satisfied or if the factorization fails, we use the BNS method, see Section 2.

For calculation of eigenvalues and eigenvectors of low-order symmetric matrices, the
well-known Jacobi iteration method (e.g. [6]) appears to be efficient. It is interesting
that the increase in computational time for one iteration compared with the second new
update or the standard BNS update is very small for N large (it is independent of N).

For our proof of global convergence we need det Ã 6= 0. This is guaranteed by Theo-
rem 1.4.2 in [6] for the first new update, since Ã22 and C̃ are nonsingular, or by Proce-
dure 5.1 for the second update, since we require L2

ii≥ εF max[Tr A, Tr(LTL)], 1≤ i ≤m,
εF ∈(0, 1), see below; note that LTL=A for A symmetric.

We first present two auxiliary procedures. Procedure 5.1, based on Lemma 5 in [21], is
used for the factorization A=UL, Procedure 5.2 serves for updating of the basic matrices
S, Y, ST Y = A, Y T Y ; the submatrices of S, Y with columns from previous iterations are
denoted by SP , YP (i.e. S = [SP , ŝ], Y = [YP , ŷ]). In comparison with the corresponding
algorithm in [3], which uses only the main diagonal of A and the part of A above the
diagonal, we need all entries of A here. Thus we use an additional vector Y T

P s=−t Y T
P Hg

(see Algorithm 5.1) to have the number of arithmetic operations approximately the same.

Procedure 5.1 (UL factorization of A)

Given: A global convergence parameter εF ∈(0, 1) and the m×m matrix A.

(i): Set Q := A, ν := m and κ := Qmm.

(ii): If Qνν < εF Tr A then the factorization fails and return.

(iii): Set Qij := Qij −QiνQνj/Qνν , i=1, . . . , ν−1, j = 1, . . . , ν−1. Set ν := ν − 1 and

12

then κ := min[κ,Qνν]. If ν >1 go to (ii).

(iv): Set Lij := Qij/
√

Qii, Uji := Qji/
√

Qii for 1≤ j ≤ i≤m and Lij := Uji := 0 for
1≤ i<j≤m. If κ <εF ‖L‖2

F then the factorization fails. Return.

Procedure 5.2 (Updating of basic matrices)

Given: t, b̂/b̄, α∈R, matrices SP , YP , ST
P YP , Y T

P YP and vectors ŝ, ŷ, g+, ST
P g, Y T

P g, Y T
P Hg.

(i): Compute ST
P g+, Y T

P g+, ŝTg+, ŷTg+, ŝTŷ, ŷTŷ.

(ii): Compute ST
P y := ST

P g+−ST
P g, Y T

P y := Y T
P g+−Y T

P g, Y T
P s := −t Y T

P Hg.

(iii): Compute ST
P ŷ :=ST

P y−αST
P y−, Y T

P ŝ :=(Y T
P s−αY T

P s−) b̂/b̄, Y T
P ŷ :=Y T

P y−αY T
P y− .

(iv): Set S := [SP , ŝ], Y := [YP , ŷ], STg+ := [ST
P g+, ŝTg+], Y Tg+ := [Y T

P g+, ŷTg+].

(v): Set A = ST Y :=
[

ST
P YP ST

P ŷ
ŝT YP ŝTŷ

]
, Y T Y :=

[
Y T

P YP Y T
P ŷ

ŷT YP ŷT ŷ

]
and return.

We now state the method in details. For simplicity, we do not describe stopping
criteria and contingent restarts when some computed direction vector is not a sufficiently
descent direction. Note that the order µ of A22 is also used as a correction indicator and
that the contingent restarts have occurred very rarely in our numerical experiments.

Algorithm 5.1

Data: A maximum number m̂ of columns S, Y , line search parameters ε1, ε2, 0<ε1 <1/2,
ε1 < ε2 < 1, tolerance parameters δi ∈ (0, 1), i ∈ {1, . . . , 7}, a global convergence
parameters θ > 1, εD, εE, εF ∈ (0, 1) and a chosen method number nM ∈ {1, 2}.

Step 1: Initiation. Choose starting point x0 ∈ RN , define the starting matrix H0 :=I and
the direction vector d0 :=−g0 and initiate the iteration counter k to zero.

Step 2: Line search. Set the update indicator iU to zero. Compute x+ := x+td, where
t satisfies (1.1), g+ :=∇f(x+), s := td, y := g+−g, b := sTy and ζ := b/yTy. Set
m̃ :=min[k, m̂−1], m :=m̃ + 1 and define HI := ζI. If k = 0 set S := [s], Y := [y],
ST Y :=[sTy], Y T Y :=[yTy], X = [1/b], compute STg+, Y Tg+ and go to Step 9.

Step 3: Correction preparation. Set µ :=1. If m>1 compute b̂, b̄, α, γ by Theorem 4.1 and
δ̄, ∆̄ by (5.6). If δ̄ < δ1, b̂ > 0, b̄ > δ2b and max[|ŝ−|/|̊s−|, |ŷ−|/|̊y−|]≤ θ set µ := 2.

If nM =1 and
(
(αγ/b̂)2>δ3 or (γ/b̂)2>δ4

)
or if nM =2 and (αγ/b̂)2>δ5 set µ :=1.

Step 4: Correction. If µ=1 set ŝ :=s, ŷ :=y, otherwise compute ŝ, ŷ by Theorem 4.1.

Step 5: Basic matrices updating. Using Procedure 5.2, form the matrices S, Y,A, Y T Y .

Step 6: Update selection. If ∆̄ > δ6 go to Step 9. Set T := I. If nM = 2 go to Step 8.
If µ = 2, form the matrix T according to the second paragraph of Section 5 and
define S̃ :=ST and Ã :=T TA, otherwise define S̃ = S and Ã = A.

Step 7: VM update 1. Set iU := 1. Use Theorems 3.2 and 3.1 with S̃, Ã, C̃, X̃ instead of
S, A, C, X to compute C̃, X̃, if all diagonal entries of Ã22 are greater then εDTr A
and if all diagonal entries of C̃ are greater then δ7Tr A and if all eigenvalues of
(C̃C̃T)1/2 divided by 1+‖Ã−1

22 Ã21‖2
F are greater than or equal to εETr A, otherwise

set iU :=0. Go to Step 9.

Step 8: VM update 2. Use Procedure 5.1 to factorize A := UL. If the factorization fails,
go to Step 9. Set iU :=2 and compute X := U−T U−1.

13

Step 9: Direction vector. Define H+ by (2.3) for iU = 0 or by (5.1) otherwise. Compute
d+ = −H+g+ and an auxiliary vector Y T H+g+ by (2.4)–(2.5) for iU = 0 or by
(5.2)–(5.3) with X̄ = TX̃T T for iU =1 or by (5.4)–(5.5) for iU =2. Set k :=k+1.
If k ≥ m̂ delete the first column of S−, Y− and the first row and column of ST

−Y−,
Y T
− Y− to form SP , YP , ST

P YP , Y T
P YP . Go to Step 2.

6 Global convergence

In this section we establish global convergence of Algorithm 5.1 in convex case and without
restarts. Assumption 6.1 and Lemma 6.1 are presented in [19], Lemma 6.2 in [21].

Note that a suitable restarts technique can guarantee global convergence also for non-
convex f , see e.g. Algorithm 6.1 and comments in the beginning of Section 7 in [22].
Besides, there are some other possibilities how to establish global convergence of VM
methods for non-convex f , see e.g. [9, 23].

Assumption 6.1. The objective function f : RN → R is bounded from below and uni-
formly convex with bounded second-order derivatives (i.e. 0 < G ≤ λ(G(x)) ≤ λ(G(x)) ≤
G < ∞, x ∈ RN , where λ(G(x)) and λ(G(x)) are the lowest and the greatest eigenvalues
of the Hessian matrix G(x)).

Lemma 6.1. Let the objective function f satisfy Assumption 6.1. Then G ≤ |̊y|2/̊b ≤ G
and b̊/|̊s|2 ≥ G (̊s, ẙ are original, uncorrected difference vectors, see Section 5).

Lemma 6.2. Let K1, K2 ∈ Rν×ν, ν > 0, be symmetric positive semidefinite matrices.
Then 0 ≤ Tr(K1K2) ≤ Tr K1 Tr K2. Moreover, if K2 is symmetric positive definite, then
Tr(K1K

−1
2) ≤ Tr K1 (Tr K2)

ν−1/ det K2.

Lemma 6.3. Let the assumptions of Theorem 3.1 be satisfied with X11 = (CCT)−1/2 and
A22 ∈ Sµ (symmetric positive definite of order µ, see Section 3). Then ATXA ∈ Sm and

Tr (ATXA)−1 ≤
(
1 + ‖A−1

22 A21‖2
F

)
Tr X11+ Tr A−1

22 ,

det X−1 = det X−1
11 det A22 .

Proof. We have X−1
11 ∼ CTX11C

∆
=M by Theorem 3.2. Further, (3.11) and (3.12) imply

ATXA =

[
M + AT

21A
−1
22 A21 AT

21

A21 A22

]
∈ Sm,

since the Schur complement of A22 in ATXA is M ∈ Sm−µ. It can easily be verified that

(ATXA)−1 =

[
M−1 −M−1AT

21A
−1
22

−A−1
22 A21M

−1 A−1
22 + A−1

22 A21M
−1AT

21A
−1
22

]
.

The trace of a product of two matrices is independent of the order of multiplication (if the
both products are defined), which gives Tr (ATXA)−1 = Tr M−1 +Tr (AT

21A
−2
22 A21M

−1)+
Tr A−1

22 . Using Lemma 6.2, we obtain

Tr (ATXA)−1 ≤
(
1 + Tr (AT

21A
−2
22 A21)

)
Tr M−1+ Tr A−1

22

=
(
1 + ‖A−1

22 A21‖2
F

)
Tr X11+ Tr A−1

22

and the rest follows from (3.9) by Theorem 1.4.2 in [6]. 2

14

Lemma 6.4. Let b̂, b̄, α, γ are given by Theorem 4.1, δ, δ̃ ∈(0, 1) and suppose that b̄ > δb
and |αγ| ≤ δ̃ b̂. Then b̂/b̄ ≤ 1/(1− δ̃) and b̂ > (δ/2)b.

Proof. In the same way as in (4.9) we get b̄ = b̂− αγ, therefore

b̂(1− δ̃) ≤ |b̂| − b̂δ̃ ≤ |b̂| − |αγ| ≤ |b̂− αγ| = b̄, b̄ ≤ |b̂|+ |αγ| < 2 b̂,

which yields b̂/b̄ ≤ 1/(1− δ̃) and b̂ > b̄/2 > (δ/2) b. 2

Lemma 6.5. Let objective function f satisfy Assumption 6.1. Then Algorithm5.1 guar-
antees that the sequences {|ŝk|2/b̂k}, {|ŷk|2/b̂k}(corrected or uncorrected) are always bounded.

Proof. Since |̊s|2/̊b≤1/G and |̊y|2/̊b≤G by Lemma 6.1, the assertion holds for ŝk, ŷk, b̂k

without corrections (µk =1). Let µk =2. The safeguarding technique in Step 3 of Algo-
rithm5.1 guarantees

b̂ > 0, b̄ > δ2b, |ŝ−| ≤ θ|̊s−|, |ŷ−| ≤ θ|̊y−|, |αγ| ≤ δ̃ b̂, δ̃=
√

max[δ3, δ5]. (6.1)

Setting δ=δ2 and using Lemma 6.4, we have b̂/b̄ ≤ 1/(1−δ̃) and b̂/b > δ/2. Similarly
we obtain b̂−/̊b− > δ/2 for µ−=2 , which is also true for µ−= 1 by b̂−/̊b−= 1>δ/2 . Thus

b̂/b̄ ≤ 1/(1−δ̃), b̂/b > δ/2, b̂−/̊b− > δ/2 (6.2)

holds for any µ−. Further we get α2 <b/b̂− by b̂ = b− α2b̂− > 0, which yields

|s− αŝ−| ≤ |s|+
√

b/b̂−|ŝ−| ≤ |s|+
√

2b/δ θ|̊s−|/
√

b̊−≤
√

b/G
(
1+

√
2/δ θ

)
,

|y − αŷ−| ≤ |y|+
√

b/b̂−|ŷ−| ≤ |y|+
√

2b/δ θ|̊y−|/
√

b̊−≤
√

b G
(
1+

√
2/δ θ

)
,

by Lemma 6.1, b̂−>(δ/2)̊b−, |ŝ−|≤θ|̊s−| and |ŷ−|≤θ|̊y−|, see (6.1)–(6.2). This implies

|ŝk|2
b̂k

=
|sk − αkŝk−1|2(b̂k/b̄k)

2

b̂k

≤
bk

(
1+

√
2/δ θ

)2

G b̂k(1−δ̃)2
≤

2
(
1+

√
2/δ θ

)2

δ G (1−δ̃)2
,

|ŷk|2
b̂k

=
|yk − αkŷk−1|2

b̂k

≤ bk G

b̂k

(
1+

√
2/δ θ

)2≤ 2 G

δ

(
1+

√
2/δ θ

)2

by Theorem 4.1 and (6.2). 2

Theorem 6.1. Let objective function f satisfy Assumption 6.1. ThenAlgorithm5.1 gen-
erates a sequence {gk} that either satisfies lim

k→∞
|gk|=0 or terminates with gk=0 for some k.

Proof. Using Lemma 6.5, we can find θ1, θ2 ∈ R satisfying

|ŝk|2/b̂k < θ1, (6.3)
|ŷk|2/b̂k < θ2 (6.4)

for all k ≥ 0, where ŝk, ŷk mean corrected or uncorrected vectors in the whole proof.

As we mentioned in Section 5, in all iterations we choose HI
k = ζkI, ζk = b̊k/|̊yk|2, see

Step 2. Denoting BI
k =(HI

k)−1, Lemma 6.1 gives

Tr BI
k = (|̊yk|2/̊bk) Tr I ≤ NG, det BI

k = (|̊yk|2/̊bk)
N≥ GN , k ≥ 0. (6.5)

(i) Suppose that iU =0, i.e. the BNS update (2.3) of HI
k is used and columns of S, Y

are ŝi, ŷi. This is equivalent to the recurrent application of the BFGS update (2.1) to HI
k

15

Hk+1
i+1 =

1

b̂i

ŝiŝ
T
i +

(
I − 1

b̂i

ŝiŷ
T
i

)
Hk+1

i

(
I − 1

b̂i

ŷiŝ
T
i

)
, i∈{k−m̃, . . . , k} ∆

= Ik, (6.6)

where Hk+1
k−m̃ = HI

k = ζkI, Hk+1 = Hk+1
k+1 . These updates satisfy (see [17])

Tr Bk+1
i+1 = Tr Bk+1

i + |ŷi|2/b̂i − |Bk+1
i ŝi|2/ŝT

i Bk+1
i ŝi, (6.7)

det Bk+1
i+1 =

(
b̂i/ŝ

T
i Bk+1

i ŝi

)
det Bk+1

i , (6.8)

i ∈ Ik, denoting Bk+1
i = (Hk+1

i)−1, i = k−m̃, . . . , k+1. This yields

Tr Bk+1
i ≤ NG + mθ2

∆
= θ3 (6.9)

by (6.4)–(6.5). Since b̂i/ŝ
T
i Bk+1

i ŝi = (b̂i/|ŝi|2)(|ŝi|2/ŝT
i Bk+1

i ŝi) ≥ 1/(θ1θ3) by (6.3) and
(6.9), for all k > 0 in view of (6.9), (6.8) and (6.5) we get

Tr Bk+1 = Tr Bk+1
k+1 ≤ θ3, (6.10)

det Bk+1 = det Bk+1
k+1 ≥ GN/(θ1θ3)

m ∆
= θ4. (6.11)

(ii) Let iU > 0, i.e. the update (5.1) is used (and columns of S, Y are again ŝi, ŷi),
where for nM =1 we use matrices S̃ = ST, Ã, C̃, X̃ instead of S, A, C, X with det T = 1,
see the beginning of Section 5. In view of BI

k = (1/ζk)I, (6.5), S̃TS̃ = T T (STS) T and
det S̃TS̃ 6= 0 due to det Ã 6= 0 (see Section 5), for k > 0 Theorem 3 in [21] gives

Bk+1 = (1/ζk)I − (1/ζk)S̃k(S̃
T
kS̃k)

−1S̃T
k + YkÃ

−1
k X̃−1

k Ã−T
k Y T

k , (6.12)

Tr Bk+1 ≤ NG + Tr (Y T
k Yk Ã−1

k X̃−1
k Ã−T

k) = NG + Tr
(
Y T

k Yk(Ã
T
k X̃kÃk)

−1
)
, (6.13)

det Bk+1 = ζm−N
k det X̃−1

k / det S̃T
kS̃k ≥ GN−m det X̃−1

k / det ST
kSk . (6.14)

(ii-a) For nM = 1, Step 7 of Algorithm 5.1 guarantees Tr Ã−1
22 ≤ µ/(εDTr A) (re-

call that Ã22 is diagonal, see Section 5) and ω Tr X̃11 ≤ (m − µ)/(εETr A), where
ω = 1+‖Ã−1

22 Ã21‖2
F . Using Lemma 6.3 with Ã, X̃ instead of A, X, we have Tr (ÃTX̃Ã)−1 ≤

m/(εMTr A), where εM = min[εD, εE]. From (6.13) we get

Tr Bk+1 ≤ NG + Tr (Y T
k Yk) Tr (ÃT

k X̃kÃk)
−1 ≤ NG + m

Tr(Y T
k Yk)

εM Tr Ak

= NG +
m

∑
i∈Ik

|ŷi|2
εM

∑
i∈Ik

b̂i

≤ NG +
m

εM

∑

i∈Ik

|ŷi|2
b̂i

≤ θ5 (6.15)

with θ5 = NG+ m2θ2/εM > θ3 by Lemma 6.2, (6.4), m > 1 and εM < 1.
We proceed to estimate det Bk+1. Similarly as above, Step 7 of Algorithm 5.1 guar-

antees det Ã22 ≥ (εDTr A)µ and det X̃−1
11 > (εETr A)m−µ by ω ≥ 1. Using Lemma 6.3

with Ã, X̃ instead of A,X, we have det X̃−1 > (min[εD, εE]Tr A)m = (εMTr A)m. Using
Lemma 6.2, (6.3) and the geometric mean - arithmetic mean inequality, from (6.14) we get

(Gm−Ndet Bk+1)
1/m ≥ (det X̃−1

k)1/m

Tr(ST
kSk)/m

>m
εM

∑
i∈Ik

b̂i∑
i∈Ik

|ŝi|2 ≥
mεM∑

i∈Ik
|ŝi|2/b̂i

≥ εM

θ1

,

i.e.
det Bk+1 > (εM/θ1)

m GN−m ∆
= θ6. (6.16)

16

(ii-b) For nM =2 we have Ak =UkLk and Xk =U−T
k U−1

k , which yields AT
k XkAk = LT

kLk.
Using Lemma 6.2, from (6.13) we get

Tr Bk+1 ≤ NG + Tr(Y T
k Yk (LT

k Lk)
−1) ≤ NG +

Tr(Y T
k Yk) Tr(LT

k Lk)
m−1

det(LT
k Lk)

. (6.17)

The conditions in Procedure 5.1 imply (Lk)
2
ii ≥ εF max[Tr Ak, Tr(LT

k Lk)], 1 ≤ i ≤m, thus
det(LT

k Lk) ≥ εm
F Tr Ak (Tr (LT

k Lk))
m−1. Using (6.17), Lemma 6.1 and (6.4) we get

Tr Bk+1 ≤ NG +
Tr(Y T

k Yk)

εm
F Tr Ak

= NG +

∑
i∈Ik

|ŷi|2
εm

F

∑
i∈Ik

b̂i

≤ NG + ε−m
F

∑

i∈Ik

|ŷi|2
b̂i

≤ θ7, (6.18)

θ7 =NG+ε−m
F mθ2 >θ3 by (6.9) and εF <1. Since X−1 = UUT and the main diagonals of

L,U are identical with U2
ii =L2

ii ≥ εF Tr A= εF
∑

i∈Ik
b̂i, we obtain similarly as above

(Gm−N det Bk+1)
1/m ≥ (det(UkU

T
k))1/m

Tr(ST
kSk)/m

≥m
εF

∑
i∈Ik

b̂i∑
i∈Ik

|ŝi|2 ≥
mεF∑

i∈Ik
|ŝi|2/b̂i

≥ εF

θ1

by (6.14), (6.3) and the geometric mean - arithmetic mean inequality. Thus we can write

det Bk+1 ≥ min[(εF /θ1)
mGN−m, θ4, θ6]

∆
= θ8 . (6.19)

(iii) Setting θ9 = max[θ5, θ7] > θ3, we always have Tr Bi ≤ θ9 and det Bi ≥ θ8, i > 1,
by (6.10) – (6.19). The lowest eigenvalue λ(Bi) of Bi satisfies λ(Bi)≥det Bi/(Tr Bi)

N−1.

Setting qi=H
1/2
i gi, we get

(̊sT
i gi)

2

|̊si|2|gi|2 =
s̊T

i Bi̊si

s̊T
i s̊i

gT
i Higi

gT
i gi

=
s̊T

i Bi̊si

s̊T
i s̊i

qT
i qi

qT
i Biqi

≥ det Bi

(Tr Bi)N−1

1

Tr Bi

≥ θ8

θN
9

, i>1, (6.20)

which implies lim
i→∞

|gi|= 0, see Theorem 3.2 in [17] and relations (3.17) – (3.18) ibid. 2

One can show in the same way as in [10] that (6.20) with line search conditions (1.1)
and Assumption 6.1 imply that the sequence {xi} is at least R-linearly convergent.

7 Numerical experiments

In this section, we compare our results with the results obtained by the L-BFGS method
[10, 16] and by our latest limited-memory method [22].

All methods are implemented in the optimization software system UFO [15], which
can be downloaded from www.cs.cas.cz/luksan/ufo.html. We use the following col-
lections of test problems:

• Test 11 – 55 chosen problems from [13] (computed repeatedly five times for a better
comparison), which are problems from the CUTE collection [2], some of them mod-
ified; used N are given in Table 1, where the modified problems are marked with ’*’,

• Test 12 – 73 problems from [1], N = 10 000,

• Test 25 – 67 chosen problems from [12], which are sparse test problems for uncon-
strained optimization, contained in the system UFO, N =10 000.

The source texts and the reports corresponding to these test collections can be down-
loaded from the web page www.cs.cas.cz/luksan/test.html.

17

Problem N Problem N Problem N Problem N
ARWHEAD 5000 DIXMAANI 3000 EXTROSNB 1000 NONDIA 5000
BDQRTIC 5000 DIXMAANJ 3000 FLETCBV3* 1000 NONDQUAR 5000
BROYDN7D 2000 DIXMAANK 3000 FLETCBV2 1000 PENALTY3 1000
BRYBND 5000 DIXMAANL 3000 FLETCHCR 1000 POWELLSG 5000
CHAINWOO 1000 DIXMAANM 3000 FMINSRF2 5625 SCHMVETT 5000
COSINE 5000 DIXMAANN 3000 FREUROTH 5000 SINQUAD 5000
CRAGGLVY 5000 DIXMAANO 3000 GENHUMPS 1000 SPARSINE 1000
CURLY10 1000 DIXMAANP 3000 GENROSE 1000 SPARSQUR 1000
CURLY20 1000 DQRTIC 5000 INDEF* 1000 SPMSRTLS 4999
CURLY30 1000 EDENSCH 5000 LIARWHD 5000 SROSENBR 5000
DIXMAANE 3000 EG2 1000 MOREBV* 5000 TOINTGSS 5000
DIXMAANF 3000 ENGVAL1 5000 NCB20* 1010 TQUARTIC* 5000
DIXMAANG 3000 CHNROSNB* 1000 NCB20B* 1000 WOODS 4000
DIXMAANH 3000 ERRINROS* 1000 NONCVXU2 1000

Table 1: Dimensions for Test 11 – the modified CUTE collection.

We have chosen m̂=5, which is an often used value in comparisons of limited-memory
methods. In [17] the results for the L-BFGS method with m̂ = 3, 5, 17, 29 are compared
and it is stated that the best CPU time is often obtained for small values of m̂, but the
algorithm tends to be less robust when m̂ is small; this is also confirmed by our numerical
experiments. Note that the required amount of storage is 2(m̂ + 1)N .

Furthermore, we have used δ1=10−2, δ2 = εE =10−5, δ3 = δ5 = 0.025, δ4 = 0.05, δ6=0.5,
δ7 = εD = εF =10−7, θ=103, ε1 =10−4, ε2 = 0.9 and the final precision ‖g(x?)‖∞ ≤ 10−6.

Table 2 contains the total number of function and also gradient evaluations (NFV)
and the total computational time in seconds (Time).

Test 11 Test 12 Test 25
Method NFV Time NFV Time NFV Time
L-BFGS 79575 20.546 114083 132.00 501657 951.55

Alg. 6.1 in [22] 59735 14.566 64242 61.39 407421 714.81
Alg. 5.1, met 1 60198 14.416 64815 62.56 372704 699.08
Alg. 5.1, met 2 60083 14.422 63482 63.11 366824 917.49

Table 2: Comparison of the selected methods.

For a better demonstration of both the efficiency and the reliability, we compare
selected optimization methods by using performance profiles introduced in [5]. The per-
formance profile ρM(τ), τ ≥ 0, is defined by the formula

ρM(τ) =
number of problems where log2(τP,M) ≤ τ

total number of problems
,

where τP,M is the performance ratio of the number of function evaluations (or the time)
required to solve problem P by method M to the lowest number of function evaluations
(or the time) required to solve problem P . The ratio τP,M is set to infinity (or some large
number) if method M fails to solve problem P .

The value of ρM(τ) at τ = 0 gives the percentage of test problems for which the
method M is the best and the value for τ large enough is the percentage of test problems

18

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.2

0.4

0.6

0.8

0.3

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 1
Alg 5.1, met 2

Performance profiles for NFV

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.2

0.4

0.6

0.8

0.1

0.3

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 1
Alg 5.1, met 2

Performance profiles for TIME

Figure 7.1: Comparison of ρM(τ) for Test 11 and various methods for NFV and TIME.

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.4

0.6

0.8

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 1
Alg 5.1, met 2

Performance profiles for NFV

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.4

0.6

0.8

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 1
Alg 5.1, met 2

Performance profiles for TIME

Figure 7.2: Comparison of ρM(τ) for Test 12 and various methods for NFV and TIME.

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.4

0.6

0.8

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 1

Performance profiles for NFV

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.2

0.4

0.6

0.8

0.3

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 1

Performance profiles for TIME

Figure 7.3: Comparison of ρM(τ) for Test 25 and various methods for NFV and TIME.

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.4

0.6

0.8

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 2

Performance profiles for NFV

0 210.2 0.4 0.6 0.8 1.2 1.4 1.6 1.8

1

0.2

0.4

0.6

0.8

0.3

0.5

0.7

0.9

L−BFGS
Alg 6.1[22]
Alg 5.1, met 2

Performance profiles for TIME

Figure 7.4: Comparison of ρM(τ) for Test 25 and various methods for NFV and TIME.

19

that method M can solve. The relative efficiency and reliability of each method can be
directly seen from the performance profiles: the higher the particular curve, the better is
the corresponding method. Figures 1–4, based on the results in Table 2, show graphical
performance profiles for the tested methods (for Test 25, we compare our new methods
separately to make the differences more visible). They demonstrate the efficiency of our
methods in comparison with the L-BFGS method. We can also see that the numerical
results for the new methods and for our method [22] are comparable.

8 Conclusions
In this contribution, we derive two new updates for general functions with minimum
violation of the previous quasi-Newton equations in some sense, describe its properties
and show how the corresponding methods can be advantageously combined with vector
corrections for conjugacy.

Our experiments indicate that this approach can improve unconstrained large-scale
minimization results significantly compared with the frequently used L-BFGS method.

References

[1] N. Andrei, An unconstrained optimization test functions collection, Advanced Mod-
eling and Optimization 10 (2008) 147-161.

[2] I. Bongartz, A.R. Conn, N. Gould, P.L. Toint: CUTE: constrained and unconstrained
testing environment , ACM Transactions on Mathematical Software 21 (1995), 123-
160.

[3] R.H. Byrd, J. Nocedal, R.B. Schnabel: Representation of quasi-Newton matrices and
their use in limited memory methods , Math. Programming 63 (1994) 129-156.

[4] J.E. Dennis, Jr., R.B. Schnabel: Least change secant updates for quasi-Newton meth-
ods , SIAM Review 21 (1979) 443-459.

[5] E.D. Dolan, J.J. Moré: Benchmarking optimization software with performance pro-
files , Mathematical Programming 91 (2002) 201-213.

[6] M. Fiedler: Special matrices and their applications in numerical mathematics, 2nd
ed. Mineola, N.Y., Dover Publications, 2008.

[7] R. Fletcher: Practical Methods of Optimization, John Wiley & Sons, Chichester,
1987.

[8] Y.F. Hu, C. Storey: Motivating Quasi-Newton Updates by Preconditioned Conju-
gate Gradient Methods , Math. Report A 150, Department of Mathematical Sciences,
Loughborough University of Technology, England, 1991.

[9] D. Li, M. Fukushima, A modified BFGS method and its global convergence in non-
convex minimization, J. Comput. Appl. Math. 129 (2001) 15-35.

[10] D.C. Liu, J. Nocedal: On the limited memory BFGS method for large scale opti-
mization, Math. Prog. 45 (1989) 503-528.

20

[11] L. Lukšan, C. Matonoha, J. Vlček: Algorithm 896: LSA - Algorithms for Large-Scale
Optimization, ACM Transactions on Mathematical Software 36 (2009) 16:1-16:29.

[12] L. Lukšan, C. Matonoha, J. Vlček: Sparse Test Problems for Unconstrained Opti-
mization, Report V-1064, Prague, ICS AS CR, 2010.

[13] L. Lukšan, C. Matonoha, J. Vlček: Modified CUTE Problems for Sparse Uncon-
strained Optimization, Report V-1081, Prague, ICS AS CR, 2010.

[14] L. Lukšan, E. Spedicato: Variable metric methods for unconstrained optimization
and nonlinear least squares , J. Comput. Appl. Math. 124 (2000) 61-95.

[15] L. Lukšan, M. Tůma, C. Matonoha, J. Vlček, N. Ramešová, M. Šǐska, J. Hartman:
UFO2017. Interactive System for Universal Functional Optimization, Report V-
1252, Prague, ICS AS CR, 2017.

[16] J. Nocedal: Updating quasi-Newton matrices with limited storage, Math. Comp. 35
(1980) 773-782.

[17] J. Nocedal, S.J. Wright: Numerical optimization, Springer-Verlag, New York, 1999.

[18] R.B. Schnabel: Quasi-Newton Methods Using Multiple Secant Equations , Technical
Report CU-CS-247-83, Department of Computer Science, University of Colorado at
Boulder, USA, 1983.

[19] J. Vlček, L. Lukšan: A conjugate directions approach to improve the limited-memory
BFGS method , Appl. Math. Comput. 219 (2012) 800-809.

[20] J. Vlček, L. Lukšan: A modified limited-memory BNS method for unconstrained
minimization based on conjugate directions idea, Optimization Methods & Software
30 (2015) 616-633.

[21] J. Vlček, L. Lukšan, Properties of the block BFGS update and its application to
the limited-memory block BNS method for unconstrained minimization, Numerical
Algorithms 80 (2019) 957-987.

[22] J. Vlček, L. Lukšan: A limited-memory optimization method using the infinitely
many times repeated BNS update and conjugate directions , J. Comput. Appl. Math.
351 (2019) 14-28.

[23] G. Yuan, Z. Sheng, B. Wang, W. Hu, Ch. Li, The global convergence of a modified
BFGS method for nonconvex functions , J. Comput. Appl. Math. 327 (2018) 274-294.

21

